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Abstract. We examine the longer-term effects of a randomized control trial (RCT) conducted between 2014-2016
on fertilizer adoption and productivity. The initial RCT randomly assigned vouchers (V), plot-specific fertilizer rec-
ommendations (R), or both treatments (R+V) to Tanzanian farmers to ease credit and information constraints. The
findings of the shorter-term study are that respondents in the V and R+V groups applied more fertilizers, but that
resulted in higher productivity for the R+V group only, with an estimated net benefit that is equivalent to wages from
21 days of work. In this study, we follow respondents over an additional three years and report two main results.
First, although farmers do not apply fertilizer once vouchers are no longer provided, when we include new untested
plots that farmers cultivate over the longer term, respondents in the R+V group still sustain higher yields in 2019
using self-reported data. Second, by using GPS measures of plot size and remote sensing estimates of productivity,
we find that none of the treatment effects are robust when using different data sources, with productivity increasing
by 0-37% in 2016 and 0-33% in 2019. Our results highlight the importance of extending follow-up periods in RCTs
through sustainable and repeated interventions to enhance adoption. The findings also emphasize the role of using
more reliable data as analysis and policy implications follow from how outcomes are measured.
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1 Introduction

Although many developing countries have witnessed increased productivity since the Green Revolution, staple cereal

yields remain low in a number of low-income countries, especially in sub-Saharan Africa (SSA). Numerous factors

contribute to this low productivity, including widespread underuse of modern agricultural technologies such as mineral

fertilizer, which has the potential to increase profitability as shown in different studies (Duflo, Kremer, & Robinson,

1Last updated on December 23, 2020. This research is funded by the SSHRC grant 430-2018-1121 and Stanford
University. We thank Matthieu Chemin for providing helpful suggestions. The data used in this paper were collected by
Aika Aku, Venacky Daniel, Ambonisye Haule, Litwagile Kajela, Vulfrida Kessy, Sweetness Kileo, Steven Kuhanwa,
Habibu Lupatu, Josephat Mbepera, Lilian Mduda, Saidi Mhina, Angel Minja, Paschal Mmelo, Anna Muffui, Burton
Mwambokela, Rajabu Mwanyika, and Gloria Peter from Sokoine University of Agriculture under the supervision of
Abdulrazzak Tamim, Christopher Magomba, and Revocatus Kayaga Ntengo. The original study was registered in the
AEA RCT Registry and the unique identifying number is: "AEARCTR-0005470". This study was approved by the
Research Ethics Board at McGill University, file number 16-0619.
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2008; Harou, Walker, & Barrett, 2017; Kaizzi et al., 2012; Vanlauwe et al., 2011; Xu, Guan, Jayne, & Black, 2009).

Many researchers have studied the lack of fertilizer adoption and documented different explanations for it, including

poor soil nutrient content, making the soil irresponsive to fertilizer application, high transaction costs and prices of

procuring fertilizer, non-adoption among peers in the same social network, risk and inability to access credit to pur-

chase fertilizer, and absence of information about the suitability of fertilizer types and quantities to apply (Bandiera

& Rasul, 2006; Conley & Udry, 2010; Croppenstedt, Demeke, & Meschi, 2003; Duflo, Kremer, & Robinson, 2011;

Emerick, de Janvry, Sadoulet, & Dar, 2016; Harou et al., 2020; Jama, Kimani, Harawa, Mavuthu, & Sileshi, 2017;

Marenya & Barrett, 2009a, 2009b; Suri, 2011).

In this study, we visit farmers three years after they participated in a randomized control trial (RCT) explained in

Harou et al. (2020) that tested the role of credit constraints and the absence of site-specific fertilizer information on

fertilizer adoption rates in Tanzania between 2014-2016. The initial study had three treatment arms: farmers who were

given plot-specific fertilizer recommendations only (group R); farmers who received vouchers only to purchase any

fertilizer they wanted (group V); and farmers who received both plot-specific fertilizer recommendations and vouchers

(group R+V). Harou et al. (2020) found that only farmers who were given vouchers increased fertilizer use in 2016

(groups V and R+V), and only those among them who got recommendations (group R+V) witnessed an increased

yield. There are two ways to interpret these results. First, farmers cannot afford fertilizer given the available financial

services and any biases in their decision making; second, farmers are not sufficiently convinced of the profitability of

fertilizer to risk their own resources on it.

The follow-up study may help to distinguish these two explanations. A continued effect on fertilizer use and yields

would be evidence of the second interpretation since vouchers were no longer provided after the initial experiment.

On the other hand, an absence of a sustained treatment effect is ambiguous since farmers may either not be able to

afford fertilizer once they are no longer provided with vouchers, or they may not have been sufficiently convinced

of profitability by the results of the first experiment. Given these possible mechanisms that may explain findings

from Harou et al. (2020), we examine the longer-term effects of the original intervention in order to shed light on the

possible fertilizer adoption constraints. Indeed, few studies we are aware of examine the effects of relaxing farmers’

constraints in the longer-run. However, understanding the potential effects of such interventions several years after

their implementation is important in thinking about designing policies that are sustainable and can have lasting effects.

Hence, we conducted a survey in August 2019 with the same 1,050 households who participated in Harou et al. (2020)

asking them about fertilizer application rates and decisions, maize yields, plot characteristics, farmers’ perceptions

of soil quality, assets, credit, and retention of information. We also collected polygons of farmers’ plots using GPS

devices, making this study a first systematic longer-term effort that compares productivity using survey data, GPS

estimates, and remote sensing techniques.

Our results indicate that, first, using self-reported (SR) measures of productivity and by employing a difference-

in-differences (DD) estimation, farmers in the R+V group have a 25% increase in their main maize plot’s (MMP)

productivity in 2017, but this productivity becomes insignificant in 2018 and 2019. When we include new plots that

were not tested as a part of the original RCT in 2014 but that farmers switch to cultivate over 2016-2019, we find a
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yearly increase in productivity of around 33% from the control group’s average over 2016-2019.

Second, since SR plot size is measured with error and can be imprecise while areas measured through Global

Positioning Systems (GPS) may be more accurate (Abay, Abate, Barrett, & Bernard, 2019; Abay, Bevis, & Barrett,

2020; Carletto, Gourlay, & Winters, 2015; Carletto, Savastano, & Zezza, 2013), we use GPS measures to estimate the

area rather than relying on SR data only. Furthermore, we use unique remote sensing methods explained in Lobell

et al. (2019) to estimate productivity derived from satellite images. Our results that rely on endline OLS regressions

indicate no or minor treatment impact (0-4%) on productivity when using satellite-based productivity. On the other

hand, GPS-based productivity measures do not show an impact in 2016, but the DD estimates indicate a treatment

impact of around 30% in 2019, only when new plots that were not tested in the original intervention are included in

the analysis. We provide suggestive evidence that this treatment impact may be driven by over-reporting output, which

would result in an increase in productivity despite controlling for measurement error in plot size.

Third, we examine fertilizer adoption and find that farmers do not apply fertilizers when vouchers are no longer

provided, over 2017-2019. To understand the mechanisms that impede fertilizer adoption, we investigate three possi-

ble pathways – first, how much information farmers actually retain in the longer-term; second, whether farmers update

their subjective soil beliefs after applying fertilizer; third, their willingness to pay (WTP) for soil information. We

find that farmers in the R+V group do not update their soil perceptions, and that they are not willing to pay more

for fertilizer compared to the control group. Therefore, farmers seem not to believe that using fertilizer is profitable,

perhaps because of the minor treatment impact, which is supported by satellite estimates.

Although the literature on fertilizer adoption in SSA is vast and spans many decades, this research contributes to

the literature in three novel ways. First, we extend an existing RCT and measure adoption and productivity over a

relatively long period of time with a high tracking rate as we resurvey 93.5% from the sample interviewed in 2016. In

doing so, we are able to disentangle the mechanisms that hinder investment in fertilizer – namely, that farmers may

not be convinced of the profitability of fertilizer rather than merely facing binding credit constraints. Relative to the

broader technology adoption literature, we have rich panel data obtained by tracing farmers back in 2019, five years

after the baseline survey was conducted, while the majority of other technology adoption field studies conduct their

endline one year since their intervention starts, with some exceptions such as Duflo et al. (2011) who collect data on

three seasons in their field experiment that focuses on biases in decision-making and Beaman, BenYishay, Magruder,

and Mobarak (2018) who follow farmers for three years to study knowledge and adoption of pit planting and crop

residue management.

Second, we use a novel approach to corroborate our findings between SR, GPS-based, and satellite-derived pro-

ductivity. The initial yield results stem from SR answers, which are prone to recall bias and measurement error. To

test the degree to which these biases might affect our results, we use an independent method to measure yields using

satellite images (Lobell et al., 2019). This is the first study we are aware of that uses this methodology to corroborate

findings from a field experiment. The results of this study highlight the role of using different data sources and empir-

ical strategies in influencing research findings and policy implications, calling for caution when interpreting data that

may be measured with error.
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Third, we follow a theoretical and an empirical approach to assess if farmers update their soil perceptions after

receiving information about their soils’ fertility and/or a voucher. While other studies have looked at factors affecting

soil perceptions, often finding yields to be a significant determinant of perceived soil fertility, these studies provides

insights about correlates of soil perceptions, but the estimates can be biased due to reverse causality and omitted vari-

able bias (Berazneva, McBride, Sheahan, & Güereña, 2018; Marenya, Barrett, & Gulick, 2008). This study is the first

to use randomization to understand if farmers update their prior beliefs about the soil fertility after applying fertilizer,

which may help in explaining the lack of adoption through farmers’ incorrect soil perceptions, highlighting the impor-

tance of policies that target farmers’ beliefs.

The remainder of this paper is organized as follows: section 2 provides some background about the study area.

In section 3, we detail our research design and data sources. Section 4 presents the econometric specifications, and

section 5 presents the results. Then, we discuss our results in section 6, and section 7 concludes.

2 Background

This study takes place in Morogoro Rural, one of the six districts in Tanzania’s Morogoro Region (Figure 1). Maize

is an important income source for many of the region’s smallholder farmers and is also important for consumption,

constituting 60 percent of dietary calories in Tanzania (Mtaki, 2017). However, maize yields have been low in the

region, with average yields of 1905 kilograms per hectare in 1994-1995 compared to 2000 kilograms per hectare in

2000-2001 (Paavola, 2008). Most households do not use improved seeds or fertilizers. Harou et al. (2020) find that 20

percent of Tanzanian farmers in their sample used improved maize seeds in 2014, while less than one percent adopted

mineral fertilizers. Overall, rural households are worse off than their urban counterparts as they have much lower

income and consumption levels, higher poverty incidence, and less access to markets (Paavola, 2008).

In 1993, the government of Tanzania revised its 1984 fertilizer recommendations by conducting trials that aimed

to study the crop response of fertilizer applications. The 1993 study refined the previous recommendations of 63 agro-

ecological zones. Recommendations in the Morogoro Region vary between 40-90 kilograms of nitrogen and 17-20

kilograms of phosphorus for one hectare of maize depending on the agro-ecological zone (Mowo, Floor, Kaihura, &

Magoggo, 1993). For example, in the Morogoro Region, the government recommends supplying the soil with 40 and

20 kilograms of nitrogen and phosphorus per one hectare of maize, respectively, in a site called Ilonga, but 90 and 20,

respectively, in another site in Morogoro called Ifakara. The recommendations include only nitrogen and phosphorus,

ignoring other nutrients important for soil fertility, such as potassium, sulfur and active carbon. Furthermore, because

the soil nutrient limitations in many countries of sub-Saharan Africa (SSA) vary spatially (Rowe, van Wijk, de Ridder,

& Giller, 2006; Tittonell et al., 2013; Zingore & Johnston, 2013), these recommendations, are unlikely to be profit-

maximizing for all farmers because soils respond in different ways to fertilizer application. Indeed, Harou et al. (2020)

find that sulfur is a limiting nutrient in many of the plots they tested - a nutrient not addressed by the government’s

recommendations.
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Fig 1: A Map of Tanzania

3 Research Design

3.1 The 2014 Randomized Experiment

Before proceeding to detailing the current design, we provide information about the 2014 RCT. Farmers were randomly

invited to participate in the original study in two stages. First, out of all maize-growing and accessible villages in

Morogoro Rural, 27 villages were assigned randomly as control and 20 as treatment. Second, within the 20 treatment

villages, farmers were randomly allocated to one of four groups (recommendations, vouchers, both treatments, and

control). The study was designed this way to allow for the testing of spillovers by comparing control farmers in control

villages and control farmers in treatment villages, as discussed in section 3.4.

The number of participants per treatment is shown in Figure 2 (source: (Harou et al., 2020)). We next share some

details about the treatment arms; for more detailed information on the original study’s design, consult Harou et al.

(2020). From each control village, 10 eligible farmers were randomly selected to participate in the study. In treatment

villages, the farmers were assigned randomly to one of the following arms (10 farmers per arm):

i. Plot-specific recommendations (Group R): Farmers received information about which fertilizer types and quan-

tities they should apply on their 2014 MMP per an acre and half an acre of land area planted with maize. These

recommendations were based on soil samples collected and tested by a team of agronomists and soil scientists
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Fig 2: Study Design

from SUA. Agronomists then met with treated farmers and presented them with a card/sheet explaining their

soils’ deficiencies and what fertilizers were recommended for their MMP.

ii. Vouchers (Group V): Farmers in this group were given a voucher valued at 80,000 TZ Shillings (or about 40

USD at the time of the study) that they could redeem to purchase any fertilizer they wanted from a specific agro-

input dealer. Farmers in this group also received their plot-specific fertilizer recommendations for the 2016-2017

planting season, after the endline data were collected in 2016.

iii. Plot-specific recommendations and vouchers (Group R+V): This group received both the vouchers and rec-

ommendations as previously described (treatments R and V).

iv. Control farmers (Group C): Control farmers received neither recommendations nor vouchers by 2016. This

group consists of control farmers in both control and treatment villages since we do not find an evidence of

spillovers, as explained in section 3.4. After the endline in 2016, farmers in the control group were provided with

fertilizer recommendations for their 2014 MMP.

3.2 Data Collection

We are interested in assessing the longer-term effects of alleviating credit and information constraints on fertilizer

adoption and maize yields using different measures of productivity. In 2019, we resurveyed a group of 1,050 house-

holds who participated in the original 2014-2016 RCT. With the collaboration of Sokoine University of Agriculture

(SUA), a leading university in Tanzania, we collected primary data from the same villages and farmers in the Moro-

goro Region which were selected randomly at baseline. The questionnaires included modules on assets, credit, land

tenure, maize yields, mineral fertilizer use, questions about farmers’ retention of the fertilizer recommendations, and

characteristics of each year’s MMP, which is defined as the plot that is cultivated with maize and that is the most

important plot for the household in terms of food security and income generation. We also collected recall data on
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some of these same topics for 2017 and 2018, creating a panel dataset of the same households for five years (2014

and 2016-2019). To remind farmers of the 2014 MMP from which soil samples were taken, we showed them a map

of their plots and their house location drawn by enumerators in 2014. We also told them how they referred to that

plot. Because the original project was highly respected by extension agents and farmers for its impact and from SUA’s

reputation, we did not have many difficulties in reaching the same farmers. We were able to visit 920 households out

of the 1,050 who participated in the original study by Harou et al. (2020), resulting in an overall high tracking rate

of around 88% since baseline in 2014 – or 93.5% compared to the 984 farmers surveyed in 2016 – despite a lack of

communication with respondents since the initial study was concluded in 2016.

We also collected GPS polygons in 2019, after enumerators were trained and during the survey’s two-day field

testing. Before proceeding to take the GPS polygons and as a part of the survey, a script reminded enumerators about

a protocol developed by our team to be used in order to collect these polygons using GPS devices.2 Enumerators

collected GPS coordinates for farmers’ 2014 MMP, 2016 MMP and 2019 MMP. They also asked if farmers cultivated

the same plot in 2014 (2016) as their 2019 MMP. If not, the enumerator asked to visit the 2014 (2016) MMP to collect

those new GPS coordinates. All polygons were collected after completing the household survey questionnaire. In do-

ing so, we are able to minimize any impact of GPS measures of areas in influencing SR answers since farmers might

have seen the GPS estimation results from the handheld devices but only after they reported their areas. Furthermore,

we gave enumerators careful instructions about measuring boundaries of the area planted with maize only and not the

entire plot so that we map the same plot boundaries using SR ad GPS measures. In addition to collecting the GPS co-

ordinates, the enumerators administered a short questionnaire, including details on whether the plot was intercropped,

if there are any large objects such as buildings or large trees inside the perimeter of the plot, and the clarity of the plot’s

boundaries.

3.3 Outcome Variables of Interest

Our main outcomes are fertilizer adoption, measured in SR kilograms of any fertilizer applied per SR acre of maize

planted (kg/acre) for the years 2016-2019, and as a binary variable that equals one if a farmer applied any fertilizer

and zero otherwise, and agricultural productivity measured in kilograms of maize harvested per acre of maize planted

(kg/acre) during the long rains season of the years 2016-2019. Productivity is measured using SR output divided by

SR area, SR output divided by GPS-based area, and using satellite images, explained further in section 5.3.

To explore the patterns behind farmers’ adoption decisions, we first assess retention of information about the

recommended fertilizer types and quantities in the years 2016 and 2019 as measured through a standardized retention

index, with larger values indicating higher retention abilities. Second, we study subjective soil beliefs (SSB), measured

by asking farmers “On a scale of 1 to 5, 1 being very poor and 5 being very good, how would you rate the quality of the

soil of this MAIZE plot in the year XXXX?” Then, we group SSB to zero (poor) if SSB is equal to one or two, one (fair)

if SSB is equal to three, and two (good) if SSB is equal to four or five to follow the way SSB is defined in the literature.3

2All polygons were collected using Garmin’s GPSMAP 64 devices.
3The results that we will show later are robust when using the 5-scale measure of perceptions.
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We also examine SSB conditional on the true soil quality, which is proxied by a soil index that we create from soil

fertility indicators (pH, electrical conductivity, active carbon, nitrogen, sulfur, potassium, and phosphorus). Based on

the index, soils are classified as being of poor, fair, or good quality. This procedure results in one unconditional SSB

regression, and three regressions conditional on the poor, fair, or good SSB. Third, we study the treatments’ effect on

WTP for soil information in 2016, measured both as an indicator variable that equals unity if a farmer is willing to pay

any amount for soil information, and also in in TZ Shillings elicited through contingent valuation. Enumerators asked

farmers if they are willing to pay 1000 TZ shillings to get plot-specific soil recommendations; if a respondent answered

“yes”, the amount was increased by 500 TZ shillings until the respondent indicated that he/she is not willing to pay the

amount, with a maximum possible WTP of 8000 TZ shillings. Although contingent valuation methods may suffer from

some bias, our procedure allows for realistic numbers that increase progressively, after some farmers were actually

given these recommendations (groups R and R+V), potentially reducing hypothetical bias. Furthermore, compared to

the standard contingent valuation method, this procedure is more efficient (Hanemann, Loomis, & Kanninen, 1991).

3.4 Spillovers

A concern about spillovers might arise from farmers sharing their fertilizer recommendations with their neighbors

from group V or the control group who were not given such recommendations before endline in 2016. Indeed, a large

body of literature investigates how farmers disseminate information in their social networks. Since farmers in group

V and the control group were provided with recommendations after endline in 2016, spillovers might have taken place

before 2016 only. However, as demonstrated in Harou et al. (2020), no spillovers were detected when comparing

control farmers in treatment villages with control farmers in control villages. As a result, in the following analysis,

we pool all control farmers together, i.e., we do not differentiate control farmers in treatment villages from control

farmers in control villages.

3.5 Attrition

From the 1,050 farmers who participated in the study at baseline in 2014, we were able to revisit 920 farmers in 2019,

resulting in an attrition rate of 12.4%, which is relatively low given that five (three) years had passed since the baseline

(endline) data collection for Harou et al. (2020). The main reasons for not being able to locate farmers were migration

(38.8%) and death (15.5%). Attrition by treatment and control groups is displayed in Table 1. To test whether attrition

may have differentially impacted the treatment groups thereby introducing bias, we analyze attrition in Appendix A.1.

The analysis indicates that attrition is unlikely to bias our estimates since the probability of attrition does not differ

significantly between all treatments and the control group, and attrition is not associated with any of our outcome

variables. Because attrition is balanced, we do not adjust for it.

3.6 Baseline Balance

To check if despite randomization there are any baseline differences between the treatments and the control group on

outcome variables of interest, as defined earlier, and on control variables, we regress baseline outcome and control
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Table 1: Participants by Assinged Group
Baseline First endline Second endline
(2014) (2016) (2019)
N N attrition N attrition

V 198 187 5.5% 178 10.1%
R 191 177 7.3% 162 15.2%
R+V 203 190 6.4% 175 13.8%
C 458 430 6.1% 405 11.6%
Total 1050 984 6.3% 920 12.4%

Note: V denotes Voucher group, R denotes the Recommendations group,
R+V denotes the Recommendations and Voucher group, and C denotes the
Control group.

Table 2: Balance of Outcome Variables
Fertilizer Fertilizer Yields Yields SSB=0 poor;
(kg/acre) (=1) (kg/SR acre) (kg/GPS acre) 1 fair; 2 good

V 0.44 0.00 -7.87 -35.42 -0.02
(0.31) (0.01) (33.87) (39.90) (0.06)

R 0.25 0.01 31.25 -22.91 0.05
(0.26) (0.01) (31.09) (53.96) (0.07)

R+V 0.01 -0.00 -22.57 -31.23 -0.01
(0.02) (0.01) (27.51) (59.97) (0.05)

N 1,050 1,050 915 752 1,046
R-squared 0.004 0.001 0.003 0.004 0.001
Village FE YES YES YES YES YES

Notes: V denotes Voucher group, R denotes the Recommendations group, and R+V denotes the Recommen-
dations and Voucher group. Robust standard errors in parentheses. Standard errors are clustered at the village
level. *** p<0.01, ** p<0.05, * p<0.1

variables on treatment indicators using ordinary least squares (OLS) with village fixed effects (FE) according to the

following specification:

biv = α0 +

3∑
k=1

θkTREAT
k
i + dv + εiv (1)

where biv is a baseline variable for farmer i in village v, α0 is a constant, TREAT k
i is a binary variable that takes

the value one for each farmer i assigned to one of the k treatment arms (V, R and R+V) and zero otherwise, dv is

village FE to control for village-specific factors that do not vary over time, and εiv is the associated idiosyncratic error

term. The omitted category is the control group, and standard errors are clustered at the village-level. Table 2 reports

the regression results for our main outcomes variables of interest, which shows that there is no significant imbalance

at baseline among all outcome variables when comparing the three treatments to the control group. However, an

imbalance in SR yields exists when we do not include village FE. Therefore, we check the robustness of our DD

results by employing an analysis of covariance (ANCOVA) estimation, as will be detailed in section 4.

Table 3 reports the balance for control variables, all of which defined in Table 21 of Appendix A.2. Most control

variables are fairly balanced except for credit access, which is imbalanced between the R group and the control group,

and the R+V group and the control group. Since the sample is well-balanced in general, we do not include covariates

in all of the econometric specifications.
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Table 3: Balance of Covariates
Dependency Assets Age Gender Educ Educ2 Credit Distance Total area Maize Area Seeds

V -0.15 -0.00 1.57 -0.03 0.03 0.03 -0.02 0.95 -0.38 0.03 -0.00
(0.15) (0.01) (0.97) (0.03) (0.03) (0.03) (0.02) (2.49) (0.60) (0.18) (0.03)

R -0.05 0.00 2.18* -0.01 -0.01 -0.00 -0.06** -5.16 -0.21 0.16 0.00
(0.13) (0.01) (1.22) (0.03) (0.04) (0.02) (0.03) (3.75) (0.68) (0.23) (0.03)

R+V -0.11 -0.00 0.76 0.06* 0.02 0.02 -0.08*** -0.47 -0.74 -0.15 0.02
(0.11) (0.01) (0.58) (0.03) (0.03) (0.02) (0.03) (3.35) (0.72) (0.14) (0.04)

N 989 1,050 1,050 1,050 1,050 1,050 1,050 926 1,050 1,046 1,050
R-squared 0.002 0.001 0.003 0.006 0.002 0.002 0.009 0.005 0.002 0.003 0.000
Village FE YES YES YES YES YES YES YES YES YES YES YES

Notes: V denotes Voucher group, R denotes the Recommendations group, and R+V denotes the Recommendations and Voucher group.
All dependent variables are defined in Table 21. Robust standard errors in parentheses. Standard errors are clustered at the village level.
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Compliance with the Assignment to Treatment
Assigned Received vouchers Received recommendations Meeting attendance
treatment N % N % N %

V 187 167 89.3 27 14.4 158 84.5
R 177 5 2.8 128 72.3 121 68.4
R+V 190 175 92.1 168 88.4 175 92.1
C 430 15 3.5 17 4.0 152 35.4

Note: V denotes Voucher group, R denotes the Recommendations group, R+V denotes the Recommendations and
Voucher group, and C denotes the Control group.

3.7 Compliance

Some farmers who were randomly assigned to the V, R and R+V treatment arms did not comply with the treatment,

as seen in Table 4 showing the numbers and percentages of farmers who received vouchers or recommendations, and

farmers who attended a SUA information and/or voucher distribution meeting. The data come from farmer-reported

answers to the endline survey that took place in 2016 with a sample size of 984 farmers.

Most farmers who were randomly chosen to receive vouchers received them (89.3% and 91.2% of farmers in

groups V and R+V, respectively). Surprisingly, a small number of farmers, 2.8% and 3.5% of farmers in the R and C

groups, respectively, report receiving vouchers. This might have occurred because some households who were given

vouchers exchanged them with others. As for the recommendations, 88.4% of farmers in the R+V group and 72.3%

of farmers in the R group report receiving them. Although all farmers in the V and C groups were supposed to receive

the recommendations only after 2016, 14.4% and 4.0% of them, respectively, indicated receiving recommendations

by 2016. This might be explained by farmers confusing receiving recommendations from agronomists performing soil

testing on their MMP, since soil testing was performed on all farmers’ MMP after baseline.

When asked if they attended a meeting in which vouchers and/or fertilizer recommendations cards/sheets were

distributed, 84.5%, 68.4%, and 92.1% of farmers in the V, R, and R+V treatments respectively confirmed that they

attended (Table 4). In general, there is partial compliance with the treatments. To account for non-compliance, we

follow an intent-to-treat analysis, regardless of whether or not farmers received the treatment in the field. This approach

deals with partial compliance but leads to an underestimation of the treatment effects.
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4 Econometric Specifications

We are interested in measuring the longer-term effects of the R, V, and R+V treatments on fertilizer adoption and

maize yields over 2016-2019. To do so, we follow an intent-to-treat (ITT) analysis and estimate the following village

fixed effects (FE) model using ordinary least squares (OLS):

Yivt = α0 +

3∑
k=1

θkTREAT
k
i +

2019∑
t=2016

βtdt +

2019∑
t=2016

3∑
k=1

γktTREAT
k
i × dt + dv + εivt (2)

where Yivt is an outcome variable for farmer i in village v at time t (2016-2019), α0 is a constant, TREAT k
i are

dummy variables for the three treatment arms, R, V, and R+V, dt are year FE to control for aggregate trends that might

influence farmers’ adoption and productivity, the dv’s are village FE to control for village-specific factors that do not

vary over time, and εivt is the associated idiosyncratic error term that varies across individuals, between villages and

over time. The main coefficient of interest is γkt, which is the difference-in-differences (DD) estimator for treatment

k (V, R or R+V) at time t (2016-2019). In order to estimate the treatment effect in the post-treatment period, we omit

the indicator for baseline (2014) among the years’ indicators (dt). Among groups interacted with years, we omit the

control group interacted with all years since they are perfectly collinear with the year FE, and the year 2014 interacted

with all groups since they are perfectly collinear with the village FE. We cluster standard errors at the village level to

account for potential within-village correlation.

Our key identifying assumption is the parallel trend assumption, which indicates that in the absence of the treat-

ment, averages of the control and treatment groups’ outcomes follow a parallel path. Given that the treatments were

assigned randomly, parallel trends should hold. However, because SR yields are imbalanced when we do not control

for village-specific heterogeneity, we explore the robustness of our results in section 5.6 by employing an ANCOVA

estimation with the following specification:

Yivt = α1 + ϕY i2014 +

3∑
k=1

γkTREAT
k
i +

2019∑
t=2016

βtdt +Mi2014 + dv + εivt (3)

where Yiv2014 is an outcome measured at baseline, and the remaining variables and parameters are the same as was

described in (2). To maximize power, we follow the same procedure in Haushofer and Shapiro (2016) by coding miss-

ing baseline values as zeros and adding Mi2014, an indicator that equals unity if a baseline observation is missing.4

In the presence of a positive treatment effect, Angrist and Pischke (2008) derive analytically a bracketing re-

lationship between DD and ANCOVA – namely, DD overestimates the treatment impact if strict exogeneity holds,

whereas ANCOVA underestimates the effect if parallel trends holds. As McKenzie (2012) indicates, the DD estimate is

γDD
kt = (Ȳ K

t −Ȳ C
t ) − (Ȳ K

2014−Ȳ C
2014), while the ANCOVA estimate is γANCOV A

kt = (Ȳ K
t −Ȳ C

t ) − ϕ̂(Ȳ K
2014−Ȳ C

2014).

4Overall, this procedure results in recovering 103 missing observations for the 2014 MMP’s SR productivity in
2016, 68 observations in 2017, 55 observations in 2018, and 37 observations in 2019. As for the 2016/19 MMP, the
analogous numbers are 112 in 2016, 87 in 2017, 83 in 2018, and 80 in 2019. When productivity is measured using
GPS areas, the missing values recovered are 86 in 2016 and 39 in 2019 for the 2014 MMP, and 94 in 2016 and 103 in
2019 for the 2016/19 MMP.
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Thus, we can think of the DD estimate as an upper bound of the treatment impact and the ANCOVA estimate as a

lower bound.

We also estimate the treatment impact using satellite images of farmers’ MMPs. For each polygon, we extract the

average value for all available dates for the visible and near-infrared (NIR) bands of Sentinel-2 satellite measurements,

which have 10m spatial resolution. From these we compute for each date the Green Chlorophyll Vegetation Index

(GCVI), which is defined as:

GCV I =
NIR

(Green− 1)
(4)

From the time series of GCVI values for each field, we fit a recursive harmonic regression to make the data more

robust to missing observations during the peak of the growing season. Then using the 10th iteration of the harmonic

curve we extract the maximum GCVI value over the growing season, which has been shown to correlate well with

crop yields in the region (Jin et al., 2019). Because reliable satellite images are only available starting in 2016, we are

unable to predict yields via satellite at baseline. We therefore have to rely on OLS to estimate the treatment impact

on satellite-derived productivity measures instead of using DD or ANCOVA. We estimate the following OLS model

using post-intervention data only:

Yivt = α2 +

3∑
k=1

βkTREAT
k
i + dv + εivt (5)

where Yivt is an outcome of farmer i in village v at post-intervention time t (2016 or 2019), and the remaining variables

are the same as was defined in equation (1).

Finally, we use pooled OLS regressions to investigate the correlation between GPS and SR areas by estimating

the following equation:

GPSit = α3 + β1SRit + εit (6)

where GPSit is the area of the MMP cultivated by farmer i at time t (2014, 2016, and 2019) obtained from GPS

estimates, α0 is again a constant, SRit is the SR area, and εit is the associated error term. In this estimation, if the

slope is close to one and the constant is close to zero, then SR and GPS estimates are very similar.

5 Empirical Results

5.1 Summary Statistics

We start by reporting descriptive statistics of interest before moving onto the estimation strategies and empirical results

in section 5.2. Table 5 shows summary statistics for a few variables that describe households at baseline in 2014.

Around 10 percent of farmers were able to access credit5 from any source (banks, cooperatives, family members, etc.)

over the last 12 months preceding the baseline survey. While households own on average more than five acres of land,

around two acres are planted with maize. Even though 88.8 percent of household heads completed some education,

only 5.8 percent completed a level beyond the seven primary Tanzanian levels.

5Credit is defined as loans, money borrowed, in-kind credit, and/or money received as a gift.
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Table 5: Descriptive Statistics of Baseline Variables
Mean SD Min Max N

Panel A: Household characteristics
Dependency ratio 1.585 1.272 0 8 989
Accessed credit (=1) 0.098 0.298 0 1 1050
Total land area owned (acres) 5.215 6.131 0 50 1050
Area planted with maize (acres) 1.881 1.951 0.07 22.69 1024
Distance to plot (minutes) 34.135 32.314 0 360 926
Panel B: Household head characteristics
Male (=1) 0.832 0.374 0 1 1050
Age 46.27 14.61 21 87 1050
Education (=1 for any level completed) 0.888 0.316 0 1 1050
Education (=1 if more than primary) 0.0581 0.234 0 1 1050

In Table 6, we present farmers’ cultivation behavior. The number of farmers who cultivated their 2014 MMP

(from which soil samples were taken in 2014) over 2016-2019 decreased from 822 in 2016 to reach 416 in 2019.

Interestingly, more farmers switched to cultivate new plots, with an increase from 81 in 2016 to 369 in 2019 (Table

6). Since some farmers switched their MMP between years, we refer to the plots that farmers consider to be most

important for their household in terms of food security and income generation over 2016-2019 as 2016-2019 MMPs,

regardless of whether or not soil samples were taken from these plots.

Table 6: Farmers’ Cultivation Behavior
2014 2016 2017 2018 2019 Total

Cultivated the 2014 MMP 915 822 621 499 416 3,273
Regarded the same 2014 MMP as 915 807 580 459 338
their MMP over 2016-2019
Cultivated a new MMP over 2016-2019 0 81 202 251 369
Total 915 888 782 710 707 4,002

We present summary statistics of fertilizer and yields by year in Table 7. Yields obtained from the 2014 and

2016-2019 MMP do not follow a consistent pattern as they declined between 2014 and 2016, increased between 2016

and 2017, and then declined again over 2017-2019. Fertilizer was applied by a small minority of farmers over the

years, increasing from around 1% of farmers in our sample at baseline applying fertilizer on their 2014 MMP to reach

5.2% in 2017, and then dropping again to 2.2% in 2018 and 1.4% in 2019. The year 2016 was an exception as farmers

were able to purchase fertilizer because of the vouchers that they were provided with from the original RCT, leading

to a quarter of farmers in our sample applying fertilizer.

In Figures 3 and 4, we show histograms of satellite-based yields measured through the GCVI for the 2014 MMP

and 2016/19 MMP, respectively. Productivity in 2019 measured through the GCVI is higher than that in 2016 for all

plots, which is in accordance with SR data reported in Table 7. In Figures 5 and 6, we compare SR and GPS areas

for the 2014 MMP and 2016/19 MMPs, respectively. In both figures, it is evident that farmers over-report the true

size of smaller plots and under-report the true size of larger plots, indicating that measurement error, defined as the a

difference between SR and GPS areas, declines with GPS plot size, which is consistent with other studies (Abay et al.,

2020; Carletto et al., 2015).
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Table 7: Descriptive Statistics of Self-Reported Adoption and Productivity
2014 MMP 2016-19 MMP

Fertilizer Fertilizer Yields Fertilizer Fertilizer Yields
(kg/acre) (=1) (kg/acre) (kg/acre) (=1) (kg/acre)

2014 0.15 0.01 412.16 0.15 0.01 412.16
(2.52) (0.09) (348.87) (2.52) (0.09) (348.87)

2016 7.63 0.25 306.18 7.97 0.25 309.24
(19.97) (0.43) (382.72) (20.26) (0.43) (379.86)

2017 1.52 0.05 502.70 1.48 0.05 513.23
(8.22) (0.22) (401.97) (8.12) (0.22) (414.24)

2018 0.49 0.02 447.07 0.76 0.02 465.92
(5.11) (0.15) (400.23) (6.83) (0.15) (402.64)

2019 0.71 0.01 318.33 0.67 0.02 331.05
(6.75) (0.12) (367.89) (6.30) (0.12) (355.87)

Notes: Numbers are averages. Standard deviations between parentheses.

Fig 3: Distribution of the 2014 MMP’s GCVI Fig 4: Distribution of the 2016/19 MMP’s GCVI

Fig 5: The 2014 MMPs’ SR and GPS Size Fig 6: The 2016/19 MMPs’ SR and GPS Size
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Finally, we show in Figure 7 kernel densities of WTP for plot-specific soil recommendations, classified by four

crops (maize, sesame, rice, and cassava). Farmers’ WTP increases between 0 and 1000 TZ shillings, but then declines

until it reaches around 6000 TZ Shillings, and then increases a bit at about 8000 TZ Shillings, which represents the

highest possible amount in the contingent valuation questionnaire. For all WTP of more than 2000 TZ Shillings,

farmers are willing to pay most for maize, followed by rice, the most intercropped crop with maize in our sample, and

then sesame and cassava, which has the lowest WTP.

Fig 7: Kernel Densities for WTP in TZ Shillings

5.2 Self-Reported Fertilizer Adoption and Productivity

We start by reporting results from farmers’ self-reported (SR) estimations in Table 8, which shows the results of

estimating equation (2). The first three columns in Table 8 display the 2014 MMP’s results, while the last three

columns display the results of the 2016-2019 MMPs. The DD coefficients for fertilizer applied in kilograms per

an acre of maize and for the decision to use fertilizer (modelled using a linear probability model) are positive and

significant at the 1% level for groups V and R+V in 2016 for both the 2014 MMP and 2016 MMP, but this additional

fertilizer translated to higher yields only for the R+V group with a magnitude of 167 kg/acre derived from the 2014

MMP and 152 kg/acre obtained from the 2016 MMP.

When looking at the longer-term treatment impact, we see that farmers in the R+V group in 2017 had a 5%

(significant at the 10% level) and a 6% (significant at the 5% level) higher probability of applying fertilizer on their

2014 and 2017 MMP, respectively. The same R+V farmers also obtained an additional 114 kg/acre from the 2014 MMP

(column 3 of Table 8) and 139 kg/acre from the 2017 MMP (column 6 of Table 8), both of which are distinguishable

from zero at the 5% and 1% levels, respectively. In 2018 and 2019, the DD estimates for fertilizer use are generally

negative but small in magnitude, indicating that fertilizer use is back to baseline levels.

Yields obtained from the 2014 MMP are insignificant in 2018 and 2019; however, the 2018 and 2019 MMP yields

are significant at the 1% level for the R+V farmers, with additional amounts of 144 and 150 kg/acre, respectively.
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Table 8: Treatment Effect on Self-Reported Adoption and Productivity
2014 MMP 2016-19 MMP

Fertilizer Fertilizer Yields Fertilizer Fertilizer Yields
(kg/acre) (=1) (kg/acre) (kg/acre) (=1) (kg/acre)

2016 0.58** 0.03** -153.48*** 0.88*** 0.03*** -147.65***
(0.22) (0.01) (36.57) (0.32) (0.01) (35.75)

2017 1.11*** 0.03** 57.73** 0.89*** 0.03** 54.01**
(0.40) (0.01) (27.56) (0.32) (0.01) (25.59)

2018 0.46** 0.02* 11.90 0.31** 0.01 12.88
(0.18) (0.01) (35.61) (0.13) (0.01) (29.11)

2019 0.68* 0.01 -132.67*** 0.47* 0.01 -136.37***
(0.39) (0.01) (34.67) (0.25) (0.01) (30.91)

V 0.25 0.00 -32.33 0.34 0.00 -42.85
(0.37) (0.01) (37.85) (0.36) (0.01) (36.79)

R 0.06 0.00 7.89 0.14 0.00 -3.16
(0.32) (0.01) (35.32) (0.31) (0.01) (34.30)

R+V -0.19 -0.00 -47.89 -0.11 -0.00 -58.75**
(0.18) (0.01) (29.29) (0.16) (0.01) (28.63)

2016×V 9.20*** 0.31*** 80.05 9.17*** 0.31*** 75.19
(2.40) (0.06) (59.01) (2.33) (0.06) (55.90)

2016×R 1.58 0.04* 16.51 1.26 0.04 11.52
(1.06) (0.02) (49.68) (1.04) (0.02) (45.97)

2016×RV 25.37*** 0.72*** 166.78*** 25.23*** 0.72*** 152.00***
(2.28) (0.03) (54.91) (2.15) (0.03) (49.65)

2017×V 1.29 0.03 59.89 1.59 0.04 97.84**
(1.20) (0.03) (48.14) (1.12) (0.03) (40.45)

2017×R -1.12* -0.04* -15.10 -0.63 -0.02 4.54
(0.58) (0.02) (55.21) (0.50) (0.02) (47.74)

2017×RV 1.07 0.05* 113.53** 1.34* 0.06** 139.02***
(0.80) (0.03) (51.77) (0.78) (0.03) (48.66)

2018×V 0.76 0.02 93.04 1.00 0.03 96.16
(1.13) (0.02) (61.70) (1.06) (0.02) (59.93)

2018×R -0.78** -0.03** -61.79 -0.17 -0.01 -28.55
(0.37) (0.01) (67.68) (0.51) (0.01) (56.83)

2018×RV -0.52** -0.00 72.46 0.95 0.02 143.98***
(0.20) (0.02) (54.38) (1.06) (0.02) (47.44)

2019×V 0.73 0.01 73.41 0.88 0.01 98.81*
(1.45) (0.02) (52.68) (1.32) (0.02) (52.45)

2019×R -0.80* -0.00 32.52 -0.09 0.01 56.76
(0.47) (0.02) (58.96) (0.55) (0.02) (53.18)

2019×RV -0.81* -0.02* 88.44 -0.30 -0.00 149.52***
(0.40) (0.01) (54.55) (0.21) (0.01) (53.35)

Control mean 0.02 0.01 448.61 0.02 0.007 448.61
(Std. dev.) (0.30) (0.08) (386.97) (0.30) (0.08) (386.97)
N 3,434 3,456 3,273 4,123 4,144 4,002
R-squared 0.239 0.398 0.045 0.226 0.383 0.050
Village FE YES YES YES YES YES YES

Notes: V denotes Voucher group, R denotes the Recommendations group, and RV denotes the Recommendations and Voucher
group. Robust standard errors in parentheses. Standard errors are clustered at the village level.
*** p<0.01, ** p<0.05, * p<0.1
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Because 52% of the 2019 MMPs are new plots that were not tested as a part of the original RCT (Table 6), and

given the lack of fertilizer application, it seems that this treatment impact may be driven by measurement error in

productivity, which we explore in the following section.

5.3 Satellite-Derived Productivity

In the analysis that follows, we investigate measurement error in productivity as a possible factor driving the treatment

impact on maize yields. We restrict the sample to plots that have both satellite-based and SR yields in order to

compare results. Furthermore, because satellite-based yield measures in intercropped fields are a combined measure

of productivity on all crops, and thus are less directly comparable to SR yields of a single crop (maize), we include

an indicator variable that equals unity if a plot is pure-stand and 0 if it is intercropped. From the 920 original surveys,

we are left with 659 and 409 observations for the 2014 MMP in 2016 and 2019, respectively, 699 observations for the

2016 MMP, and 689 observations for the 2019 MMP, for which we have both satellite and SR yields.

Table 9 displays the results of estimating equation (5) - panel A reports results for the 2014 MMP while panel B

reports the 2016/19 MMP results. We report in the first six columns results without village FE, but we include these

in the last six columns. This is not optimal from the broader goal of being able to use satellites on their own, but it

helps explain why satellite-based estimates and SR estimates may give different results. As can be seen from both

panels, when we restrict the satellite-based and SR estimates to the same sample, the R+V treatment does not have a

significant impact using SR data in 2016 when we do not control for baseline imbalance using village FE (column 1

in Table 9), but it has a significant impact when we include village FE (column 7). In 2019, the R+V treatment leads

to higher yields using SR data for the 2019 MMP only, with an amount of around 80 kg/acre, which represents around

18% increase from the control group’s mean.

Moving to remote sensing measures, the satellite estimates indicate no treatment effect in any year on any of

the MMPs, with two exceptions: we see in column 2 of Table 9 that the V treatment increased the 2014 MMP’s

productivity in 2016 by around 4% from the control group’s mean. However, when we control for village-specific

heterogeneity in column 8, this treatment impact disappears. The second instance in which we observe a significant

treatment impact using satellite estimates is an increase of around 3.5% for the R+V group’s yields obtained from

the 2019 MMP (column 5). Including village FE, however, makes this impact vanish. Therefore, based on a more

objective measure of productivity, we do not see a robust or substantial treatment impact.

We also use seemingly unrelated regressions (SUR) after applying an inverse hyperbolic sine (IHS) transformation

for the outcomes in order to compare SR and satellite data. In columns 3 and 6 (Table 9), we report results of testing for

SUR coefficient equality in 2016 and 2019 without village FE, while columns 9 and 12 display the same comparisons

after including village FE. Although the coefficients vary in their signs and magnitudes, the only significant estimates

are those of the 2019 MMP for the V group, with a difference of 0.46 (column 6) without controlling for village-

specific heterogeneity and 0.43 (column 12) when controlling for it. Therefore, the DD V treatment impact using SR

data observed in Table 8 on the 2019 MMP (which represents an increase of 22%) may be driven by an over-estimation

of productivity, pointing to the possibility of measurement error in SR productivity.
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5.4 Correlation between Self-Reported and GPS-Estimated Plot Size

We start by presenting in Table 10 difference in means between the two measures of plot size – SR and GPS estimates –

using paired t-tests. In panel A we report results for the 2014 MMP, while panel B displays the 2016/19 MMPs’ results.

All differences between SR and GPS areas are negative and distinguishable from zero at the 1% level, indicating that

farmers, on average, under-report plot size, resulting in inflated productivity. Measurement error in Table 10 is smallest

for the R+V farmers and largest for the R farmers, both in absolute value (column 5) and relative to the GPS-based true

plot size (column 7). Compared to the control group, there does not seem to be a substantial difference in measurement

error among the three treatments.

Table 10: Measurement Error in Plot Size by Treatment
(1) (2) (3) (4) (5) (6) (7) (8)
Self-Reported GPS-estimated Measurement error Relative N

Mean SD Mean SD Mean SD bias
Panel A: 2014 MMP
C 1.72 1.42 2.03 1.86 -0.314*** 1.45 -15.27% 845
V 1.7 1.38 2.07 1.92 -0.368*** 1.34 -17.87% 380
R 1.76 1.9 2.16 2.27 -0.409*** 1.92 -18.98% 324
R+V 1.78 1.53 2.05 1.44 -0.271*** 1.43 -13.17% 360
Total 1.73 1.52 2.07 1.88 -0.333*** 1.52 -15.94% 1909

Panel B: 2016/19 MMP
C 1.71 1.42 1.99 1.83 -0.279*** 1.36 -14.07% 1003
V 1.78 1.69 2.13 2.27 -0.349*** 1.43 -16.43% 434
R 1.72 1.82 2.08 2.17 -0.354*** 1.82 -16.83% 378
R+V 1.76 1.51 2.01 1.45 -0.252*** 1.35 -12.44% 420
Total 1.74 1.56 2.04 1.92 -0.300*** 1.46 -14.71% 2235

Notes: C denotes the Control group, V denotes Voucher group, R denotes the Recommendations group, and
R+V denotes the Recommendations and Voucher group. Robust standard errors in parentheses. Standard
errors are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1

Next, we estimate the correlation between SR and GPS-based areas using equation (6). The 2014 MMP’s results

are reported in panel A in Table 11, while panel B displays the 2016/19 MMPs’ results. Recall that if the slope is

around unity and the regression constant is around zero, then SR and GPS estimates are very similar. When we pool

all treatments together, we see that the slope and the constant have a similar value (column 1 in Table 11). However,

this aggregation masks differences between treatments. When looking at the correlation between the GPS estimates

and SR plot size for the R+V farmers, we notice that this correlation is lowest since the slope is smallest among all

treatments with a magnitude of 0.5, and the constant term is largest with a magnitude of 1.2 for the 2014 MMP. In

panel B, we again notice that the R+V farmers still have the largest constant term and the smallest slope.

5.5 Productivity Using Self-Reported vs. GPS-Based Plot Size

We examine if the measurement error in SR areas has a role in the treatment impact on the R+V farmers by comparing

productivity (kg/acre) using SR production in kilograms per acre planted, where acres are reported either by the

respondent or derived via GPS estimates. Since we have baseline production data, we use the same preferred DD
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Table 11: Correlation Between GPS-Estimated and Self-Reported Plot Size
(1) (2) (3) (4) (5)
All C V R R+V

Panel A: 2014 MMP
SR plot size 0.76*** 0.84*** 1.00*** 0.70*** 0.50***

(0.06) (0.06) (0.07) (0.17) (0.13)
Constant 0.74*** 0.60*** 0.37** 0.93*** 1.16***

(0.13) (0.12) (0.16) (0.27) (0.24)
N 1,909 845 380 324 360
R-squared 0.385 0.408 0.515 0.346 0.286

Panel B: 2016/19 MMP
SR plot size 0.82*** 0.87*** 1.05*** 0.71*** 0.56***

(0.05) (0.06) (0.06) (0.16) (0.13)
Constant 0.61*** 0.50*** 0.26** 0.85*** 1.03***

(0.11) (0.11) (0.11) (0.25) (0.23)
N 2,235 1,003 434 378 420
R-squared 0.446 0.459 0.607 0.355 0.339

Notes: C denotes the Control group, V denotes Voucher group, R denotes the Recom-
mendations group, and R+V denotes the Recommendations and Voucher group. Robust
standard errors in parentheses. Standard errors are clustered at the village level. ***
p<0.01, ** p<0.05, * p<0.1

estimator employed in equation (2), but we restrict the sample to plots that have both GPS-based and SR areas. We

also restrict the analysis to the years to 2014, 2016, and 2019 because these are the years for which we have GPS

areas.6 The results are reported in Table 12.

The first four columns report the 2014 MMP’s results while the last four columns display the 2016/19 MMPs’

results. In columns 3-4 and 7-8, we restrict the sample to plots that have GPS size of more than 0.5 acres since

including small plots can reduce the coefficient of determination (Burke & Lobell, 2017). Interestingly, Table 12

shows that when GPS areas are used, the treatment impact on yields of farmers in the R+V group in 2016 vanishes

(columns 2, 4, 6, 8). The treatment impact on yields obtained from the 2019 MMP for farmers in the R+V group,

however, is persistent (only at the 10% level) when we use GPS estimates (columns 6 and 8 in Table 12), which

suggests that the largest difference between SR and GPS areas takes place in 2016 relative to 2014. Measurement

error in areas might help explain the treatment impact, if we assume GPS areas are more accurate than SR ones.

The results reported in Table 12 also indicate that farmers in the V group have higher productivity in 2019 derived

from the 2014 MMP when its plot size is larger than 0.5 acres (columns 3 and 4), and also from the 2019 MMP, both

for the entire sample and when restricted to plots that have a size of more than 0.5 acres (columns 5-8). The satellite

results in Table 9 showed that farmers in the V group over-report their 2019 MMP’s productivity. In this analysis,

we cannot quantify measurement error in output, but if we assume that farmers in the V group over-report output

especially that they were shown to over-estimate productivity in Table 9, then over-reporting output may also lead

to inflated productivity despite correcting for measurement error in plot size, explaining the significant V treatment

6Since we did not collect baseline data on SR output and area of the 2014 MMP as a part of the original study, we
relied on productivity of the 2014 MMP using output and areas that were measured by agronomists. In this analysis,
we follow the same procedure and measure productivity at baseline as estimated by agronomists.
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impact. Indeed, using an objective measure of plot size has reduced the V treatment impact from 117 kg/acre to 99

kg/acre (columns 5 and 6 in Table 12), but using this objective plot size does not rule out the possibility of over-

reporting output, which we discuss in more detail in section 6.

5.6 Robustness of Results

l We test the robustness of our results by first running the same analysis where we pool the R and control groups

together, and the V and the R+V groups together. The reason behind this pooling is that all farmers were given the

recommendations after 2016; thus, the voucher distinguishes the groups over 2017-2019. First, the DD results indi-

cate that farmers in the pooled V and R+V group have higher SR yields in all years and from both of their 2014 MMP

and 2016-2019 MMPs (Table 22 in Appendix A.3), and they apply more fertilizer in 2017 but not in 2018 and 2019,

suggesting that the original DD results are robust to pooling.

Second, moving to the OLS regressions using SR and satellite-derived yields and focusing on our preferred spec-

ifications that include village FE, the treatment impact using satellite estimates stays insignificant when we pool the

V and R+V groups. As for the treatment impact on the 2014 MMP’s SR yields, it declines from 118 kg/acre to 87

kg/acre in 2016 (column 5 in Table 23) but changes from being insignificant in 2019 to significant at the 10% level

with a magnitude of 39 kg/acre (column 7 in Table 23). Similarly, the 2016 MMP’s SR productivity declines from 109

kg/acre to 89 kg/acre (column 5 in Table 23) and that of the 2019 MMP from 83 kg/acre to 48 kg/acre Therefore, it

seems that pooling reduces the SR treatment impact.

Third, the pooled DD results for comparing SR and GPS-based productivity indicate that the treatment impact on

SR productivity is smaller in magnitude (by around 20-25 kg/acre) when we pool the V and R+V groups for all plots

and years, but still significant (Table 24). As for GPS-based productivity, it stays insignificant for the 2014 MMP in

2016, and significant at the 10% level in 2019 with similar magnitudes. The 2016 MMPs’ GPS-based productivity,

however, becomes significant when the sample is restricted to plots of size more than 0.5 acres with a magnitude of

81 kg/acre, and that of the 2019 MMP stays significant but is reduced by around 15 kg/acre. Overall, it seems that

pooling reduces some of the coefficients, but makes some previously insignificant impacts more precise.

As a second robustness check, in Appendix A.4, we use ANCOVA shown in equation (3), which may be thought

of as a lower bound of the treatment impact. As Table 25 shows, the impact in 2016 is now reduced from 167 kg/acre

to 123 kg/acre for the 2014 MMP and from 152 kg/acre to 105 kg/acre for the 2016 MMP. However, the remaining re-

sults over 2017-2019 become insignificant for all plots, except for the 2019 MMP’s SR R+V productivity that declines

from 150 kg/acre to 85 kg/acre. We check the robustness of the GPS-based productivity by employing ANCOVA

again (Table 26). In 2016, only SR R+V productivity is significant but is smaller in magnitude by 40-50 kg/acre,

while GPS-based productivity stays insignificant. Moving to 2019, all of the V treatment impacts become insignif-

icant, while the GPS-based R+V treatment effect is reduced from 138 kg/acre to 95 kg/acre for the entire sample,

and becomes insignificant when only plots of size larger than 0.5 acres are included. Overall, by using ANCOVA,

the SR treatment impact in 2016 (on all plots) and 2019 (2019 MMP) stays significant but becomes smaller, whereas

GPS-based productivity is reduced in magnitude by around 30%. Table 27 provides a summary of all the results.
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6 Discussion

Given the distinct data sources, the R+V treatment seems to have had a varying impact on productivity, with self-

reports indicating an increase of 23%-37% in 2016, no impact on the 2014 MMP in 2019, and a 19%-33% increase

on the 2019 MMP. On the other hand, satellite images reveal a minor or no treatment impact both in 2016 and 2019,

while GPS-based measures indicate no treatment effect in 2016 on all plots, but an effect that ranges between 23%-33%

on the 2019 MMP. This latter case represents a disagreement between satellite-derived and GPS-based productivity

because the 2019 MMP’s productivity is positive and significant using GPS-based estimates. A possible explanation

for this apparent disagreement is that farmers over-report output, as has been shown to be the case in Gourlay, Kilic,

and Lobell (2019), when SR maize output was compared to crop cutting–based estimates, the gold standard measure

of output. To validate this argument, we asked farmers in 2019 to recall the area and output of their 2014 MMP in

2016 and their 2016 MMP, allowing us to investigate recall bias by comparing productivity in 2016 using SR actual

data collected in 2016 from Harou et al. (2020) and 2016 SR data recalled in 2019. Figures 8 and 9 present results for

the 2014 and 2016 MMP, respectively.

Fig 8: SR Productivity of the 2014 MMP (in kg/acre) Fig 9: SR Productivity of the 2016 MMP (in kg/acre)

As can be seen from both figures, respondents tend to over-report productivity (in kg/acre) on their plots when

asked in 2019 to recall the 2016 size and production. Although the data indicate that farmers over-report their plot

size by around half an acre on average when they recall the area three years later, they also over-report output by

around 620-640 kg, which is so high that it drives a wedge between actual and recalled productivity of more than 200

kg/acre (around a 70% increase) on average. Given these vast differences when investigating one form of measurement

error that stems from recall bias, it is possible that farmers tend to over-estimate their production, leading to the R+V

treatment impact on the 2019 MMP, even when we control for measurement error in plot size. Although this analysis

does not explain fully the treatment impact observed in 2019 (even after controlling for measurement error in plot

size) because the 2019 data do not suffer from recall bias, assuming other forms of measurement error, such as

misperceptions (Abay et al., 2020), follow a similar pattern, then this recall bias may represent an evidence of over-

reporting output in general, a finding confirmed in Gourlay et al. (2019).
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Even if we assume that the R+V treatment has had an impact on productivity and profits as reported by farmers

(Harou et al., 2020), it remains that they do not apply fertilizer after the original intervention was concluded in 2016,

which reconciles all of the different productivity results as farmers seem not to be convinced of the profitability of

fertilizer, given their limited resources. To examine this argument, we explore three different reasons that may explain

why farmers choose not to invest in fertilizer. First, are farmers unable to recall the recommendations that were given

to them? Second, do farmers (incorrectly) believe that their soils are fertile and hence do not require fertilizer? Third,

are farmers not willing to pay for fertilizer?

6.1 Information Retention

To test the effect of the V, R, and R+V treatments on farmers’ information retention, we construct standardized reten-

tion indices, with higher values indicating better retention abilities. The indices are based on farmers’ ability to recall

the recommendations in Table 13, which shows the recommended fertilizers based on the soil nutrient limitations for

the 1007 farmers whose soils were tested. The question that we asked farmers in 2016 was "Can you please list the

types of fertilizer that were recommended to you [source: SUA SoilDOC project]." and that in 2019 was "Can you

please list the types and quantities of ALL fertilizers (basal and top dressing) PER ACRE that were recommended to

you for your 2014 main maize plot?"

Table 13: Fertilizer Recommendations
Nutrient limitations Treatment # %
N 25 kg Urea + 2x5 kg Urea 36 3.57
NS 25 kg SA + 25 kg Urea 639 63.46
NP 25 kg DAP + 25 kg Urea 7 0.7
NPS 40 kg Minjingu Mazao + 25 kg Urea 215 21.35
NK 25 kg MOP + 25kg Urea + 2x5 kg Urea 2 0.2
NKS 25 kg SOP + 25kg Urea + 2x5 kg Urea 56 5.56
NPK 25 kg DAP + 25kg MOP + 25 kg Urea 2 0.2
NPKS 50 kg Yara Mila Tobacco + 25 kg Urea 50 4.97
Total 1007 100

Notes: The above recommendations are for a land area of half an acre planted with maize. N is
nitrogen, S is sulfur, P is phosphorus, and K is potassium. SA stands for ammonium sulfate, DAP
for diammonium phosphate, MOP for muriate of potash (potassium chloride), and SOP for sulfate of
potash (potassium sulphate).

Since we do not have data on recalled fertilizer quantities in 2016, the 2016 index is constructed by first assigning

one point for every fertilizer type recalled correctly. Then, we subtract the mean and divide by the standard deviation

(SD) to normalize it. As for 2019, we construct three retention indices by assigning scores and then standardize

them. The first measure assigns one point for every fertilizer type recommended that was correctly recalled and

disregards the quantity in order to mimic the 2016 index; the second measure assigns one point for every fertilizer type

recommended and two points for every fertilizer quantity recommended that were correctly recalled, assuming that it

is harder to recall quantities; in the third index, each farmers is given one point for each type and one point for each

quantity recalled correctly, thus relaxing the assumption that it is harder to recall quantities. For farmers who claim
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Table 14: Raw Retention Scores
The 2016 First 2019 Second 2019 Third 2019

scores scores scores scores
0 737 546 546 546
1 126 280 127 127
2 121 94 30 183
3 - - 153 16
4 - - 16 48
6 - - 48 -
N 984 920 920 920

not to have received recommendations or who do not recall the recommendations, we assign them a score of zero.7 In

Table 14, we present the raw retention scores before normalization.

After creating the index, we study retention by estimating equation (5) in 2016 and again in 2019 using OLS

since retention is a post-intervention measure. The results are shown in Table 15. The first column of Table 15

shows the results for the 2016 index, while the remaining columns show the 2019 indices. Compared to the control

group, farmers in the R and R+V groups have one additional SD and 1.5 SD in 2016, respectively, and this effect is

significant at the 1% level. These results are to be expected because farmers in the control and V groups received their

plot-specific recommendations only after the 2016 endline data were collected. Indeed, in 2016, there is no substantial

effect on retention for farmers in the V group (0.1 SD) compared to farmers in the control group. When measured in

2019, retention of farmers in the R group becomes indistinguishable from zero, while the increase in scores of farmers

in the R+V group that was observed in 2016 drops to around 0.4 SD in in all of the three indices. In 2019, there is still

no difference in retention between farmers in the V group and the control group. This finding is unexpected because

farmers in the V group received their recommendations after 2016, more recently than the other farmers, but highlights

the importance of receiving information and using it simultaneously so that this information is not disregarded.

Having the opportunity to practice a technology, i.e., applying fertilizers, appears to help farmers retain the infor-

mation provided to them. Indeed, since farmers in the R group were not given vouchers to use the information, and

since farmers in the V group were given vouchers before being given the recommendations, they were also unable to

act on the information. Since the R+V farmers recall the recommendations in 2019 but to a lesser extent compared to

2016, we can rule out the possibility that farmers are unable to recall the recommendations as an explanation for the

lack of adoption, pointing again to the idea that farmers are not convinced of the profitability of fertilizer, given the

risks associated with adopting.

7Since 3.6% of farmers were recommended to apply urea only (N-limited group in Table 13), we double their
scores to make them comparable to the majority of farmers who were recommended two fertilizers. Only two farmers
were recommended to apply three fertilizers and neither of them recalled the recommendations in 2019, so their scores
are zero. However, one farmer of them was able to recall the three fertilizers in 2016, and so we change the score from
three to two points to be consistent with the majority of farmers who were recommended to apply two fertilizers.
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Table 15: Treatment Effect on Information Retention
The 2016 First 2019 Second 2019 Third 2019

retention index retention index retention index retention index
V 0.10** 0.09 0.09 0.09

(0.05) (0.09) (0.08) (0.08)
R 1.01*** 0.05 0.02 0.03

(0.13) (0.08) (0.08) (0.08)
R+V 1.50*** 0.45*** 0.39*** 0.42***

(0.09) (0.10) (0.11) (0.11)
Control mean -0.51 -0.12 -0.09 -0.10
(Std. dev.) (0.26) (0.94) (0.97) (0.96)
N 984 920 920 920
R-squared 0.337 0.025 0.019 0.022
Village FE YES YES YES YES

Notes: V denotes Voucher group, R denotes the Recommendations group, and R+V denotes the Recommen-
dations and Voucher group. Robust standard errors in parentheses. Standard errors are clustered at the village
level. *** p<0.01, ** p<0.05, * p<0.1

6.2 Soil Fertility Beliefs

6.2.1 A Bayesian model of updating beliefs

In their work, Murphy, Roobroeck, Lee, and Thies (2020) incorporate both an empirical and a theoretical approach to

farmers updating their willingness to pay (WTP) for fertilizer upon receiving soil information. The authors motivate

their study with a Bayesian theoretical model in which farmers update their prior beliefs about input profitability. They

conduct a randomized control experiment to elicit Kenyan farmers’ WTP for DiAmmonium Phosphate (DAP) fertil-

izer. Their results indicate that WTP for DAP increased when DAP was recommended, highlighting the importance of

soil testing to increase WTP for fertilizer with the potential for increasing adoption. Compared to their study, we as-

sess the longer-term effects of providing farmers with soil information on soil perceptions and not on an auction-based

WTP.

We first present a simple model of farmers updating their soil fertility perceptions following Bayesian updating.

In this study, farmers are assigned randomly to a vouchers-only treatment, a recommendations-only treatment, both

treatments, or none (control). The information about true deficiencies can cause farmers to either not change their

prior beliefs, or to revise their priors upwards/downwards. Conditional on acting on that information provided, farm-

ers might believe that they are improving their soils because they are addressing the deficiency identified.

We proceed to describing the model. Let SSBit, the subjective soil belief of farmer i at time t that varies based

on the soil nutrient content, be unknown to farmers precisely, but its estimates follow a normal distribution:

SSBit ∼ N
(
SSBit , ν

2
it

)
(7)

Define the accuracy of a farmer’s belief, ψit, by the inverse of its variance to reflect that a farmer’s belief about the

soil quality is more accurate if it is less variable:

ψit =
1

ν2it
> 0 (8)
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A farmer receives an unbiased information signal R from our recommendation treatment about the true soil quality,

which includes information about the soil’s nutrient deficiencies and the suitable fertilizer to apply. A farmer might

also receive a signal V from the voucher treatment that permits purchasing fertilizer, increasing the true soil quality

through the nutrients coming from the applied fertilizer. Assuming the signal K (R or V) to be normally distributed,

we have:

K ∼ N
(
ξKit , σ

2(K)
it

)
,K = R, V (9)

If a farmer updates his/her soil beliefs following Bayesian updating, posterior mean SSB is given by the weighted

average of the prior beliefs and the signal received:

SSB
K

it+1 =
ν2it

ν2it + σ
2(K)
it

ξKit +
σ
2(K)
it

ν2it + σ
2(K)
it

SSBit =
ξKit + ψitσ

2(K)
it SSBit

1 + ψitσ
2(K)
it

,K = R, V (10)

Notice that in equation (10), posterior and prior soil beliefs are unchanged if the signal received, whether bad or good,

is equal to the prior beliefs:

ξKit = SSBit =⇒ SSB
K

it+1 = SSBit, K = R, V (11)

Based on this model, there are three propositions that we can test empirically:

Proposition 1:

Upon receiving the R treatment, and based on equation (10), we have three possible cases:

ξRit < SSBit =⇒ SSB
R

it+1 < SSBit, (12)

ξRit > SSBit =⇒ SSB
R

it+1 > SSBit, (13)

ξRit = SSBit =⇒ SSB
R

it+1 = SSBit, (14)

Equation (12) means that in the case of an R treatment, a farmer would update his/her prior beliefs downwards if the

information about the soil quality received is lower than his/her prior beliefs i.e. what he/she thinks of his/her soil

fertility initially. However, a farmer would not update his/her belief if the bad signal is equal to his/her prior belief

about the soil quality, as seen in equation (14)

Proposition 2:

From (10), when a farmer receives a voucher treatment, we have:

ξVit > SSBit =⇒ SSB
V

it+1 > SSBit, (15)
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Equation (15) means that when a farmer receives a V treatment, he/she will update his/her prior belief upwards

if the V treatment has a larger impact on SSB than the prior belief. This scenario happens because vouchers allowed

purchasing fertilizers that replenished the soil’s nutrient content, meaning that farmers were able to act and apply

fertilizer.

Proposition 3:

When V and R signals are given simultaneously, there are three possible cases:

ξVit < ξRit =⇒ SSB
RV

it+1 < SSBit (16)

ξVit > ξRit =⇒ SSB
RV

it+1 > SSBit (17)

ξVit = ξRit =⇒ SSB
RV

it+1 = SSBit (18)

Therefore, farmers will update their prior SSB downwards (upwards) if they believe the R (V) treatment to be stronger

than the V (R) treatment, and they will not update their beliefs if the two treatments have comparable effect on prior

SSB. These three propositions can be tested empirically using data on prior and posterior beliefs upon receiving V

and/or R treatments compared to a control group of farmers who do not receive any treatment by 2016.

6.2.2 Testing the model

To test the model, we employ our preferred DD estimation in equation (2) because we have baseline data. Recall that

subjective soil beliefs (SSB) is elicited by asking farmers directly about their soil perceptions without being given any

guidance, and is defined as an ordinal variable that takes a value of zero to indicate poor soil perceptions, one if a

farmer has fair perceptions, and two indicates a good belief about the soil fertility. We restrict the sample to the years

2014, 2016 and 2019 to use the SSB data when they were collected (baseline in 2014, endline in 2016, and extension

in 2019) to avoid recall bias. We also restrict the analysis to the 2014 MMP since this is the plot that was tested, and

also because we asked farmers about their SSB in 2019 regardless of whether or not they cultivated the 2014 MMP.8

We are also interested in learning whether the effect of the R, V, and R+V treatments on SSB depends the under-

lying soil quality. In other words, we want to know whether farmers update their SSB conditional on the content of

the information they receive. The left-hand side of equation (2) becomes SSB|TSQi where TSQ stands for true soil

quality, which is proxied through a soil index we create from seven soil fertility indicators (pH, electrical conductiv-

ity [EC], active carbon [AC], nitrogen [N], sulfur [S], potassium [K] and phosphorus [P]) using principal component

analysis (PCA). The weights assigned to the indicators based on PCA are 0.23 for pH, 0.27 for EC and N, 0.19 for

AC, and 0.31 for P, S, and K. The index takes a value between zero and one, with higher values indicating better soil

8The correlation between SSB of the 2014 and 2016/2019 MMP is 93% and the results that we will show are
almost the same when we use the 2016/2019 MMP instead of the 2014 MMP.
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Table 16: Descriptive Statistics of the TSQ by Limitation
Limitations Mean SD Min Max #
N 0.78 0.10 0.58 1 36
NS 0.61 0.10 0.28 0.92 637
NP 0.50 0.13 0.35 0.73 7
NK 0.49 0.13 0.40 0.59 2
NPK 0.46 0.22 0.31 0.62 2
NPS 0.4 0.12 0.12 0.73 215
NKS 0.38 0.09 0.2 0.55 54
NPKS 0.20 0.11 0 0.45 50
Total 0.54 0.17 0 1 1003

Notes: Limitations refer to soil deficiencies classified by
agronomists and soil scientists as a part of the 2014 experiment.
N is nitrogen, S is sulfur, P is phosphorus, and K is potassium.

fertility.9 Table 16 provides summary statistics of the TSQ index by nutrient deficiencies. In order to classify soils,

we consider a soil score to be poor if it is less than 0.33, fair if it is higher than or equal to 0.33 and less than 0.66,

and good if it is higher than or equal to 0.66. Based on this classification, 12.16 percent of farmers have “poor” TSQ,

61.81 percent have “fair” TSQ, and 26.02 percent have “good” TSQ.

The index is similar to that of Lobell et al. (2019) and Gourlay et al. (2019). It controls for pH, EC, AC, as well

as other nutrients (S, K, N, and P). These variables are necessary in this study’s context since most of the soils are

deficient in N and S, and as there is a large variability in P and K content. Compared to Mukherjee and Lal (2014),

this index takes into account nutrient supply capacity but due to data limitations does not incorporate two components

of soil quality that they consider – root development and water storage capacities. More details on the construction of

the soil index are provided in Appendix A.5. The results are reported in Table 17.

Column 1 in Table 17 shows the unconditional results. The DD coefficient is statistically different from zero only

for farmers in the V group in 2016, with a magnitude of 0.17 when SSB is not conditioned on TSQ. Also, the DD

coefficient for the R group in 2016 is negative (but insignificant) with a magnitude of 0.02 and increases to become

0.22 when SSB is conditioned on poor TSQ. Following the notation of the theoretical model, the upward update by

the V farmers requires the mean of the vouchers signal received to be greater than prior beliefs:

ξVi2014 > SSBi2014 (19)

However, the absence of updating by farmers in the R group as indicated by the marginal and insignificant DD coeffi-

cient in 2016 (with an unconditional magnitude of -0.02) necessitates that:

ξRi2014 = SSBi2014 (20)

Hence, according to equations (19) and (20) and following the theoretical motivation, when both V and R signals are

9The average continuous soil score is 0.558 and standard deviation is 0.173.
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Table 17: Treatment Effect on Subjective Soil Beliefs
(1) (2) (3) (4)

SSB=0 poor; SSB|Poor SSB|Fair SSB|Good
1 fair; 2 good TSQ TSQ TSQ

2016 -0.00 -0.03 0.01 0.01
(0.04) (0.14) (0.06) (0.08)

2019 -0.15*** -0.15 -0.15** -0.06
(0.05) (0.15) (0.07) (0.06)

V -0.01 -0.13 -0.01 0.15**
(0.05) (0.19) (0.05) (0.06)

R 0.05 0.11 -0.01 0.13
(0.06) (0.15) (0.07) (0.12)

R+V -0.01 -0.01 -0.02 0.08
(0.04) (0.18) (0.06) (0.09)

2016×V 0.17** 0.21 0.11 0.16
(0.07) (0.17) (0.09) (0.13)

2016×R -0.02 -0.22 0.00 0.00
(0.08) (0.18) (0.12) (0.14)

2016×RV 0.09 0.19 0.03 0.10
(0.08) (0.20) (0.11) (0.13)

2019×V 0.07 -0.01 0.12 -0.09
(0.09) (0.21) (0.10) (0.19)

2019×R 0.02 -0.04 0.06 -0.12
(0.10) (0.21) (0.13) (0.16)

2019×RV 0.03 0.09 0.06 -0.15
(0.06) (0.20) (0.11) (0.11)

Control mean 1.62 1.48 1.61 1.65
(Std. dev.) (0.59) (0.72) (0.61) (0.54)
N 2,833 329 1,669 714
R-squared 0.017 0.029 0.012 0.031
Village FE YES YES YES YES

Notes: V denotes Voucher group, R denotes the Recommendations group, and RV de-
notes the Recommendations and Voucher group. Control mean refers to the mean of the
control group at baseline. TSQ is the true soil quality index, based on which soils are clas-
sified as of poor, fair, or good fertility. Robust standard errors in parentheses. Standard
errors are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1

combined as was the case of farmers in the R+V group, it follows that:

ξVi2014 > ξRi2014 =⇒ SSB
RV

i2016 > SSBi2014 (21)

Equation (21) means that farmers in the R+V group should update their beliefs upwards as a result of receiving both

recommendations and vouchers since the V farmers updated their prior SSB upwards, but the R farmers did not. When

these implications are taken to the data, we observe in column 1 of Table 17 that equation (21) does not hold since

γRV 2016 is insignificant. Therefore, assuming farmers update their prior beliefs following Bayesian updating, our

results indicate that farmers do not update their prior beliefs. Furthermore, farmers seem not to update their beliefs

based on the underlying true soil quality as all coefficients in columns 2-4 in Table 17 are insignificant, suggesting that

farmers may be unaware of their soils’ inadequate nutrient content.

Farmers in the R+V group observe higher SR yields from their 2014 MMP in 2016. Yet, their beliefs about the
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soil fertility are unchanged. On the other hand, farmers in the V group do not obtain additional SR yields in 2016,

but they update their beliefs upwards. Studies by Marenya et al. (2008) and Berazneva et al. (2018) find yields from

survey data to correlate positively with soil perceptions. However, using SR data, we do not find an evidence of

this correlation, which is an important experimental contribution, highlighting that many factors may confound the

relationship between yields and perceptions. Thus, it seems that farmers think that their soils are fertile and hence do

not need fertilizer, especially that more than 65% of farmers in our sample ranked their soils’ quality as “good” or

“very good”. Another possibility is that farmers question fertilizer’s profitability, contributing to explaining farmers’

lack of fertilizer application despite witnessing short-term gains on the level of SR productivity and profitability, as

shown in Harou et al. (2020). In a study conducted in the Morogoro Region, the same area in our study, Michelson,

Fairbairn, Ellison, Maertens, and Manyong (2021) find that farmers’ incorrect beliefs about fertilizer quality affect

their demand for fertilizer, highlighting the importance of farmers’ erroneous beliefs in explaining fertilizer underuse.

6.3 Willingness to Pay for Recommendations

The third factor that we explore and that may play a role in explaining farmers’ reluctance to invest in fertilizer is that

they are not willing to pay for it. Two studies done in Tanzania – Michelson et al. (2021) and Shee, Azzarri, and Haile

(2020) – find that farmers are not willing to pay for fertilizer at the prevailing market prices. Although we did not

elicit WTP for fertilizer, we elicited WTP for tailored plot-specific soil recommendations using contingent valuation.

If WTP for recommendations is unchanged, then this supports the argument that farmers are not convinced of the

profitability of fertilizer because these recommendations are the factor that distinguishes the V and R+V groups, with

the latter having higher SR yields. To test for this possibility, we estimate equation (5) in 2016 using OLS since WTP

for soil information is a post-intervention measure. The results are reported in Table 18.

Table 18: Treatment Effect on WTP for Recommendations
(1) (2) (3) (4) (5) (6) (7) (8)

WTP indicator (=1 if willing) WTP amount (in TZ shillings)
Maize Sesame Rice Cassava Maize Sesame Rice Cassava

V 0.01 0.01 0.03 0.01 341.68 -114.60 -95.46 -162.15
(0.03) (0.06) (0.04) (0.06) (209.14) (353.43) (175.45) (277.70)

R -0.04 0.03 -0.05 -0.04 150.42 115.59 -15.18 66.84
(0.05) (0.06) (0.05) (0.07) (307.74) (432.56) (294.85) (488.38)

R+V -0.05 -0.06 -0.00 -0.12** 372.09 -78.32 374.82 -113.07
(0.03) (0.05) (0.03) (0.05) (251.98) (299.82) (265.89) (383.76)

Control mean 0.89 0.73 0.81 0.66 3413.3 2594.86 3000 2106.99
(Std. dev.) (0.31) (0.44) (0.39) (0.48) (2732.78) (2725.01) (2806.64) (2466.11)
N 959 727 806 549 959 727 806 549
R-squared 0.004 0.004 0.005 0.010 0.002 0.001 0.004 0.001
Village FE YES YES YES YES YES YES YES YES

Notes: V denotes Voucher group, R denotes Recommendations group, and R+V denotes the Recommendations and Voucher group.
Control mean refers to the mean of the control group post-intervention. Robust standard errors in parentheses. Standard errors are
clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1.

The first four columns in Table 18 report results of WTP for maize, sesame, rice, and cassava as an indicator

variable, while the last four columns report WTP in TZ Shillings. As can be seen in the table, all of the coefficients
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are indistinguishable from zero, with an exception for the R+V farmers who have a 12% lower probability of desiring

to pay for cassava. Overall, it seems that farmers are not interested in paying for soil recommendations, supporting

the argument of farmers not being convinced of the R+V treatment’s profitability. Overall, farmers’ beliefs about their

soil quality and/or the impact of fertilizer on net benefits plays a role in explaining farmers’ reluctance to pay for soil

information and adopt fertilizer, supporting the productivity results that are based on satellite images, which reveal no

or minor treatment impact.

7 Conclusion

In this study, we examine the longer-term effects of alleviating credit and information constraints on fertilizer adoption

and maize productivity. The results indicate a persistent treatment impact on maize SR yields obtained from the 2016-

19 MMPs for farmers who were given both the recommendations and vouchers, but fertilizer use is indistinguishable

from zero as early as one year after the intervention concluded. Employing more objective measures of productivity

– such as by using satellite and GPS – reveals a lower and less significant treatment impact, supporting the argument

that farmers do not view fertilizer as an investment that they are willing to engage in.

A more detailed analysis of other factors that may impede fertilizer adoption shows that, first, farmers who are

informed about which fertilizers to apply and have the opportunity to act on and experiment with the information

retain information in the longer run. Second, farmers update their prior perceptions upwards after receiving vouchers

but not when they are given recommendations, suggesting that farmers are unaware of their soils’ deficiencies. Third,

assessment of willingness to pay indicates that farmers in all of the treatment groups are not willing to pay for soil

information.

Identifying other possible mechanisms that affect fertilizer adoption and maize yields requires information on a

variety of inputs. For instance, having data on organic fertilizer would allow testing whether some farmers applied

more organic fertilizer that replenished their soils with carbon, an important nutrient that complements the nitrogen

from fertilizer (Marenya & Barrett, 2009a, 2009b), and hence had higher productivity. Indeed, farmers may use inputs

as complements. Research by BenYishay and Mobarak (2018) shows that farmers who adopted pit planting also had a

25% higher chance of applying manure. Composting is another technology that might have affected yields of the R+V

farmers. This technology was shown in the same study by BenYishay and Mobarak (2018) to increase maize yields in

Malawi by 50% when incentives and proximity were exploited to spread information about it. Moreover, in order to

assess measurement error in output, full-plot crop cutting is needed instead of using SR data.

Farmers who applied fertilizer constitute a minority: 5.2%, 2.2% and 1.4% in 2017, 2018 and 2019 of farmers

in our sample applied fertilizer on their 2014 MMP, respectively, compared to 0.8% in 2014. The proportions are not

very different for the 2017-19 MMP: 4.9% in 2017, 2.4% in 2018, and 1.6% in 2019. These percentages highlight a

persistent and an alarming lack of fertilizer use in Tanzania and raise concerns about many of the current programs

that find short-term impacts on technology adoption and productivity. Farmers who apply fertilizer over the short-term

only may in fact be learning that fertilizer use is unprofitable because their soils are so degraded, that repeated fertilizer

application may be needed to increase profits substantially and change farmers’ prior beliefs about their soil fertility.
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Our findings also provide important insights for extension services. Dissemination of agronomic information to

farmers without giving them the chance to experiment with the information may not result in long-term retention.

Thus, to save costs of repeated extension visits, especially to remote villages, extension agents should consider finding

ways of actively engaging farmers in exploring the information given to them rather than communicating with them as

passive recipients only. Indeed, there has been a push lately towards increasing demonstration plots whereby farmers

can observe the gains to improved agronomic practices like using mineral fertilizers. Timing of the information and the

subsidies to act on it is also crucial because farmers retain information only when both fertilizer recommendations and

vouchers are given at the same time, prior to the planting season when farmers are able to make use of the information.

More research is needed to decipher the mechanisms through which farmers update (or do not) their prior beliefs

about their soil fertility. Understanding how soil perceptions are shaped is important because even if farmers have

access to credit and are aware of the profit-maximizing fertilizer(s) types and quantities, they might choose to avoid

applying fertilizers on soils that they regard as fertile, although these subjective beliefs are not necessarily true. When

we understand how farmers’ beliefs are shaped, it is possible to use behavioral insights, for example, to correct existing

biases in case subjective perceptions do not match objective measures of soil quality. The findings of this study are a

first step in this direction, but more studies are needed to deepen our understanding about the roles of market conditions,

farmers’ socioeconomic characteristics, and soils’ biophysical properties in shaping farmers’ perceptions about their

soil fertility. Future research is also needed to determine how accurate are farmer reports of the area planted and yields

using large scale interventions that quantify the factors leading to the divergence between GPS and SR areas, and

satellite and SR productivity.

33



References

Abay, K. A., Abate, G. T., Barrett, C. B., & Bernard, T. (2019). Correlated non-classical measurement errors, ‘second

best’ policy inference, and the inverse size-productivity relationship in agriculture. Journal of Development

Economics, 139, 171 - 184. doi: https://doi.org/10.1016/j.jdeveco.2019.03.008

Abay, K. A., Bevis, L. E. M., & Barrett, C. B. (2020). Measurement error mechanisms matter: Agricultural intensi-

fication with farmer misperceptions and misreporting. American Journal of Agricultural Economics, n/a(n/a).

doi: https://doi.org/10.1111/ajae.12173

Angrist, J. D., & Pischke, J.-S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton

university press.

Bandiera, O., & Rasul, I. (2006). Social networks and technology adoption in Northern Mozambique. Economic

Journal, 116(514), 869-902. doi: 10.1111/j.1468-0297.2006.01115.x

Beaman, L., BenYishay, A., Magruder, J., & Mobarak, A. M. (2018). Can network theory-based targeting increase

technology adoption? (Working Paper No. 24912). National Bureau of Economic Research. Retrieved from

http://www.nber.org/papers/w24912 doi: 10.3386/w24912

BenYishay, A., & Mobarak, A. M. (2018). Social learning and incentives for experimentation and communication.

The Review of Economic Studies, 86(3), 976-1009. doi: 10.1093/restud/rdy039

Berazneva, J., McBride, L., Sheahan, M., & Güereña, D. (2018). Empirical assessment of subjective and objective

soil fertility metrics in east Africa: Implications for researchers and policy makers. World Development, 105,

367-382. doi: https://doi.org/10.1016/j.worlddev.2017.12.009

Burke, M., & Lobell, D. B. (2017). Satellite-based assessment of yield variation and its determinants in smallholder

African systems. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1616919114

Carletto, C., Gourlay, S., & Winters, P. (2015). From Guesstimates to GPStimates: Land Area Measurement and

Implications for Agricultural Analysis. Journal of African Economies, 24(5), 593-628. doi: 10.1093/jae/

ejv011

Carletto, C., Savastano, S., & Zezza, A. (2013). Fact or artifact: The impact of measurement errors on the farm

size–productivity relationship. Journal of Development Economics, 103, 254 - 261. doi: https://doi.org/

10.1016/j.jdeveco.2013.03.004

Conley, T. G., & Udry, C. R. (2010). Learning about a new technology: Pineapple in Ghana. American Economic

Review, 100(1), 35-69. doi: 10.1257/aer.100.1.35

Croppenstedt, A., Demeke, M., & Meschi, M. M. (2003). Technology adoption in the presence of constraints: The

case of fertilizer demand in Ethiopia. Review of Development Economics, 7(1), 58–70. doi: https://doi.org/

10.1111/1467-9361.00175

Duflo, E., Kremer, M., & Robinson, J. (2008). How high are Rates of return to fertilizer? Evidence from field

experiments in Kenya. American Economic Review, 98(2), 482-88. doi: 10.1257/aer.98.2.482

Duflo, E., Kremer, M., & Robinson, J. (2011). Nudging farmers to use fertilizer: Theory and experimental evidence

from Kenya. American Economic Review, 101(6), 2350-90. Retrieved from https://www.aeaweb.org/

34

http://www.nber.org/papers/w24912
https://www.aeaweb.org/articles?id=10.1257/aer.101.6.2350
https://www.aeaweb.org/articles?id=10.1257/aer.101.6.2350


articles?id=10.1257/aer.101.6.2350 doi: 10.1257/aer.101.6.2350

Emerick, K., de Janvry, A., Sadoulet, E., & Dar, M. H. (2016). Technological innovations, downside risk, and the

modernization of agriculture. American Economic Review, 106(6), 1537-61. doi: 10.1257/aer.20150474

Gourlay, S., Kilic, T., & Lobell, D. B. (2019). A new spin on an old debate: Errors in farmer-reported production and

their implications for inverse scale - productivity relationship in Uganda. Journal of Development Economics,

141, 102376. doi: https://doi.org/10.1016/j.jdeveco.2019.102376

Hanemann, M., Loomis, J., & Kanninen, B. (1991). Statistical efficiency of double-bounded dichotomous choice

contingent valuation. American Journal of Agricultural Economics, 73(4), 1255-1263. doi: https://doi.org/

10.2307/1242453

Harou, A. P., Madajewicz, M., Michelson, H., Palm, C. A., Amuri, N., Magomba, C., . . . Weil, R. (2020). The joint

effects of information and financing constraints on technology adoption: Evidence from a field experiment in

rural Tanzania. Submitted.

Harou, A. P., Walker, T. F., & Barrett, C. B. (2017). Is late really better than never? The farmer welfare effects of

pineapple adoption in Ghana. Agricultural Economics, 48(2), 153-164. doi: 10.1111/agec.12322

Haushofer, J., & Shapiro, J. (2016). The Short-term impact of unconditional cash transfers to the poor: Experimental

evidence from Kenya. The Quarterly Journal of Economics, 131(4), 1973-2042. doi: 10.1093/qje/qjw025

Jama, B., Kimani, D., Harawa, R., Mavuthu, A. K., & Sileshi, G. W. (2017). Maize yield response, nitrogen use

efficiency and financial returns to fertilizer on smallholder farms in southern Africa. Food Security, 9, 577–

593. doi: 10.1007/s12571-017-0674-2

Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., & Lobell, D. B. (2019). Smallholder maize area

and yield mapping at national scales with google earth engine. Remote Sensing of Environment, 228, 115 -

128. doi: https://doi.org/10.1016/j.rse.2019.04.016

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical

Transactions of the Royal Society A, 374(2065). doi: https://doi.org/10.1098/rsta.2015.0202

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological

Measurement, 20(1), 141-151. doi: 10.1177/001316446002000116

Kaizzi, K., Byalebeka, J., Semalulu, O., Alou, I. N., Zimwanguyizza, W., Nansamba, A., . . . Wortmann, C. (2012).

Maize response to fertilizer and nitrogen use efficiency in Uganda. Agronomy Journal, 104(1), 73-82. doi:

10.2134/agronj2011.0181

Linn, R. L. (1968). A Monte Carlo approach to the number of factors problem. Psychometrika, 33(1), 37-71. doi:

https://doi.org/10.1007/bf02289675

Lobell, D. B., Azzari, G., Burke, M., Gourlay, S., Jin, Z., Kilic, T., & Murray, S. (2019). Eyes in the sky, boots on the

ground: Assessing satellite- and ground-based approaches to crop yield measurement and analysis. American

Journal of Agricultural Economics. doi: 10.1093/ajae/aaz051

Marenya, P. P., & Barrett, C. B. (2009a). Soil quality and fertilizer use rates among smallholder farmers in western

Kenya. Agricultural Economics, 40(5), 561–572. doi: 10.1111/j.1574-0862.2009.00398.x

35

https://www.aeaweb.org/articles?id=10.1257/aer.101.6.2350
https://www.aeaweb.org/articles?id=10.1257/aer.101.6.2350


Marenya, P. P., & Barrett, C. B. (2009b). State-Conditional fertilizer yield response on Western Kenyan farms.

American Journal of Agricultural Economics, 91(4), 991-1006. doi: 10.1111/j.1467-8276.2009.01313.x

Marenya, P. P., Barrett, C. B., & Gulick, T. (2008). Farmers’ perceptions of soil fertility and fertilizer yield response

in Kenya (Working Paper). Social Science Research Network. Retrieved from http://dx.doi.org/

10.2139/ssrn.1845546

McKenzie, D. (2012). Beyond baseline and follow-up: The case for more t in experiments. Journal of Development

Economics, 99(2), 210 - 221. doi: https://doi.org/10.1016/j.jdeveco.2012.01.002

Michelson, H., Fairbairn, A., Ellison, B., Maertens, A., & Manyong, V. (2021). Misperceived quality: Fertilizer

in tanzania. Journal of Development Economics, 148, 102579. doi: https://doi.org/10.1016/j.jdeveco.2020

.102579

Mowo, J., Floor, J., Kaihura, F., & Magoggo, J. (1993). Review of fertilizer recommendations in Tanzania:

Part 2, revised fertilizer recommendations for Tanzania (No. Soil Fertility Report No. F6). Retrieved from

https://library.wur.nl/isric/fulltext/isricu_i13557_001.pdf ([Online; accessed

May 8, 2020])

Mtaki, B. (2017). 2017 Tanzania corn, wheat and rice report. Retrieved from https://apps.fas.usda.gov/

newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%

20Feed%20Annual_Dar%20es%20Salaam_Tanzania%20-%20United%20Republic%20of_4

-6-2018.pdf ([Online; accessed April 5, 2020])

Mukherjee, A., & Lal, R. (2014). Comparison of soil quality index using three methods. PLoS ONE, 9(8). doi:

10.1371/journal.pone.0105981

Murphy, D. M., Roobroeck, D., Lee, D. R., & Thies, J. (2020). Underground knowledge: Estimating the impacts

of soil information on transfers through experimental auctions. American Journal of Agricultural Economics,

00(00), 1-26. doi: 10.1111/ajae.12101

Paavola, J. (2008). Livelihoods, vulnerability and adaptation to climate change in Morogoro, Tanzania. Environmental

Science Policy, 11(7), 642-654. doi: https://doi.org/10.1016/j.envsci.2008.06.002

Rowe, E., van Wijk, M., de Ridder, N., & Giller, K. (2006). Nutrient allocation strategies across a simplified hetero-

geneous African smallholder farm. Agriculture, Ecosystems and Environment, 116(1-2), 60–71.

Shee, A., Azzarri, C., & Haile, B. (2020). Farmers’ willingness to pay for improved agricultural technologies: Evi-

dence from a field experiment in tanzania. Sustainability, 12(1), 216. doi: https://doi.org/10.3390/su12010216

Suri, T. (2011). Selection and comparative advantage in technology adoption. Econometrica, 79(1), 159-209. doi:

10.3982/ECTA7749

Tittonell, P., Muriuki, A., Klapwijk, C. J., Shepherd, K. D., Coe, R., & Vanlauwe, B. (2013). Soil heterogeneity and

soil fertility gradients in smallholder farms of the East African Highlands. Soil Science Society of America

Journal, 77(2), 525-538. doi: 10.2136/sssaj2012.0250

Vanlauwe, B., Kihara, J., Chivenge, P., Pypers, P., Coe, R., & Six, J. (2011). Agronomic use efficiency of N fertilizer

in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant

36

http://dx.doi.org/10.2139/ssrn.1845546
http://dx.doi.org/10.2139/ssrn.1845546
https://library.wur.nl/isric/fulltext/isricu_i13557_001.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_Dar%20es%20Salaam_Tanzania%20-%20United%20Republic%20of_4-6-2018.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_Dar%20es%20Salaam_Tanzania%20-%20United%20Republic%20of_4-6-2018.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_Dar%20es%20Salaam_Tanzania%20-%20United%20Republic%20of_4-6-2018.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_Dar%20es%20Salaam_Tanzania%20-%20United%20Republic%20of_4-6-2018.pdf


and Soil, 339, 35-50. doi: 10.1007/s11104-010-0462-7

Xu, Z., Guan, Z., Jayne, T. S., & Black, R. (2009). Factors influencing the profitability of fertilizer use on maize in

Zambia. Agricultural Economics, 40(4), 437–446. doi: 10.1111/j.1574-0862.2009.00384.x

Zingore, S., & Johnston, A. (2013). The 4R nutrient stewardship in the context of smallholder agriculture in Africa.

In B. Vanlauwe, P. van Asten, & G. Blomme (Eds.), Agro-Ecological intensification of agricultural systems in

the African Highlands (p. 77-84). London: Routledge.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain.

Psychological Bulletin, 99(3), 432-442. doi: https://psycnet.apa.org/doi/10.1037/0033-2909.99.3.432

37



A Appendices

A.1 Attrition Analysis

First, we check that the probability of attriting is not correlated with treatment by estimating the following equation

using ordinary least squares (OLS) with village fixed effects (FE):

attritioniv = α0 +

3∑
k=1

θkTREAT
k
i + dv + εiv (22)

where attritioniv is a binary variable that takes the value one if farmer i in village v attrited and 0 otherwise, α0 is a

constant, TREAT k
i is a binary variable that takes the value one for each farmer i assigned to one of the k treatment

arms (V, R and R+V) and zero otherwise, dv is village FE, and εiv is the associated idiosyncratic error term. The

omitted category is the control group, and standard errors are clustered at the village-level. Table 20 indicates that

there is no statistical difference in probability of attrition between all the treatments compared to the control group.

Table 19: Probability of Attrition by Treatment
attrition (2016) attrition (2019)

V -0.00558 -0.00326 -0.0147 -0.0314
(0.0241) (0.0214) (0.0297) (0.0295)

R 0.0122 0.0157 0.0361 0.0201
(0.0239) (0.0217) (0.0301) (0.0327)

R+V 0.00290 0.00539 0.0222 0.00423
(0.0188) (0.0178) (0.0281) (0.0260)

Constant 0.0611*** 0.116***
(0.0135) (0.0139)

N 1,050 1,050 1,050 1,050
R-squared 0.001 0.001 0.003 0.003
Village FE NO YES NO YES

Notes: V denotes the Voucher group, R denotes the Recommendations group,
and R+V denotes the Recommendations and Voucher group. Robust standard
errors in parentheses. Standard errors are clustered at the village level.
*** p<0.01, ** p<0.05, * p<0.1

Second, we test whether attrition is associated with any of the outcome variables of interest, which are SSB,

fertilizers and yields in kg/acre, and fertilizer use as a binary variable, by running the following OLS regression with

village FE:

yiv = α0 + attritioni + dv + εiv (23)

where yiv is one of the aforementioned outcome variables, and the remaining variables are the same as in equation (22).

The regression results are reported in Table 21. We do not include one of the outcome variables, namely the retention

index, because it is analyzed following cross-sectional estimations in 2016 and then in 2019 (post-intervention), as we

ask farmers to recall the recommendations given to them at baseline.

Table 21 confirms that attrition did not have a statistical impact on the estimates of the main outcome variables,

except when fertilizer use is an indicator variable. A total of eight farmers applied fertilizer among the 1,050 par-

ticipating farmers at baseline, and all of them attrited from the study. We believe this might be the reason driving
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the statistical significance. Nonetheless, the coefficient does not seem to be economically significant since those who

attrited have a 0.7% and 1.1% less chance of applying fertilizer in 2016 and 2019, respectively.

Table 20: Attrition Effect on Outcome Variables
Year Fertilizer Fertilizer Yields Yields (kg/ SSB=0 poor;

(kg/acre) (=1) (kg/ SR acre) GPS acre) 1 fair; 2 good
attrition (=1) 2016 -0.20 -0.01** -29.75 -58.25 0.03

(0.17) (0.00) (40.59) (67.89) (0.07)

attrition (=1) 2019 -0.23 -0.01*** -12.22 - 0.08
(0.15) (0.00) (34.68) (0.05)

N 1,050 1,050 915 752 1,046
Village FE YES YES YES YES YES

Notes: Robust standard errors in parentheses. Standard errors are clustered at the village level. *** p<0.01, ** p<0.05,
* p<0.1

A.2 Description of Baseline Variables

Table 21: Description of Baseline Variables
Variable Description
Dependency Dependency ratio is the proportion of individuals aged less than 18 and over 60 years
Assets Asset index is constructed from quantities of household, productive, and livestock assets

using principal component analysis (PCA)
Age Age of household head in years
Gender =1 if household head is male and 0 if female
Educ =1 if household head completed any education and 0 otherwise
Educ2 =1 if household head completed more than primary education and 0 otherwise
Credit =1 if household accessed credit and 0 otherwise
Distance Distance to the 2014 main maize plot in minutes
Total Area Total area owned by the household in acres
Maize Area Total area planted with maize by the household in acres
Seeds =1 if household used improved seeds and 0 otherwise
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A.3 Robustness to Pooling

Table 22: Pooled Treatment Effect on Self-Reported Adoption and Productivity
2014 MMP 2016-19 MMP

Fertilizer Fertilizer Yields Fertilizer Fertilizer Yields
(kg/acre) (=1) (kg/acre) (kg/acre) (=1) (kg/acre)

2016 1.03*** 0.04*** -148.43*** 1.23*** 0.04*** -144.26***
(0.34) (0.01) (28.97) (0.35) (0.01) (28.72)

2017 0.80*** 0.02** 53.46** 0.72** 0.02** 55.39**
(0.30) (0.01) (22.53) (0.28) (0.01) (21.34)

2018 0.23 0.01 -5.74 0.27 0.01 5.30
(0.17) (0.01) (25.32) (0.18) (0.01) (22.07)

2019 0.47 0.01 -124.32*** 0.45* 0.01 -120.89***
(0.29) (0.01) (31.33) (0.23) (0.01) (26.65)

TREAT -0.00 -0.00 -43.19* 0.02 -0.00 -50.93**
(0.24) (0.01) (24.81) (0.23) (0.01) (24.40)

2016×TREAT 16.73*** 0.50*** 118.57*** 16.93*** 0.51*** 111.24***
(1.59) (0.04) (43.44) (1.65) (0.04) (40.46)

2017×TREAT 1.51** 0.05*** 90.82** 1.64** 0.05*** 116.84***
(0.58) (0.02) (39.07) (0.66) (0.02) (36.63)

2018×TREAT 0.38 0.02 100.87** 1.03 0.03** 127.39***
(0.61) (0.01) (41.07) (0.78) (0.01) (44.81)

2019×TREAT 0.23 -0.00 72.67* 0.31 -0.00 108.72**
(0.84) (0.01) (40.73) (0.72) (0.01) (41.75)

Control mean 0.09 0.01 441.26 0.09 0.01 441.26
(std. dev.) (1.98) (0.09) (368.63) (1.98) (0.09) (368.63)
N 3,434 3,456 3,273 4,123 4,144 4,002
R-squared 0.192 0.340 0.043 0.184 0.330 0.049
Village FE YES YES YES YES YES YES

Notes: TREAT is equal to unity if a farmer was assigned to the V or R+V groups and is equal to zero if a farmer was assigned the
C or R groups. Robust standard errors in parentheses. Standard errors are clustered at the village level.
*** p<0.01, ** p<0.05, * p<0.1
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Table 23: Pooled Treatment Effect on Self-Reported and Satellite-Derived Productivity
(1) (2) (3) (4) (5) (6) (7) (8)
SR Satellite SR Satellite SR Satellite SR Satellite

2016 2016 2019 2019 2016 2016 2019 2019
Panel A: 2014 MMP
TREAT (=1) 58.68 0.07** 0.79 -0.01 86.46*** 0.03 39.32* -0.03

(42.29) (0.03) (36.05) (0.04) (32.09) (0.02) (22.05) (0.04)
Pure stand (=1) -35.47 -0.08 34.17 -0.02 -75.75 -0.06 52.76 -0.02

(51.06) (0.05) (40.37) (0.04) (46.80) (0.06) (46.58) (0.04)
Control mean 473.55 2.18 444.39 2.45 473.55 2.18 444.39 2.45
(Std. dev.) (377.91) (0.41) (321.29) (0.41) (377.91) (0.41) (321.29) (0.41)
N 659 659 409 409 659 659 409 409
R-squared 0.005 0.008 0.002 0.000 0.013 0.003 0.007 0.002
Village FE NO NO NO NO YES YES YES YES

Panel B: 2016/19 MMP
TREAT (=1) 56.62 0.04 50.76 0.05 88.78*** 0.02 48.04** 0.01

(39.54) (0.03) (33.61) (0.04) (30.16) (0.03) (23.03) (0.03)
Pure stand (=1) -20.05 -0.07 74.79** 0.02 -67.86 -0.05 74.63** 0.03

(52.60) (0.05) (29.64) (0.04) (49.33) (0.06) (32.58) (0.03)
Control mean 467.91 2.20 445.65 2.42 467.91 2.20 445.65 2.42
(Std. dev.) (375.86) (0.42) (332.42) (0.41) (375.86) (0.42) (332.42) (0.41)
N 699 699 689 689 699 699 689 689
R-squared 0.008 0.001 0.006 0.000 0.007 0.001 0.007 0.000
Village FE NO NO NO NO YES YES YES YES

Notes: TREAT is equal to unity if a farmer was assigned to the V or R+V groups and is equal to zero if a farmer was assigned the C or R
groups. Robust standard errors in parentheses. Standard errors are clustered at the village level.
*** p<0.01, ** p<0.05, * p<0.1

Table 24: Pooled Treatment Effect on Productivity Using Self-Reported and GPS Plot Size
(1) (2) (3) (4) (5) (6) (7) (8)

2014 MMP >0.5 acres 2016/19 MMP >0.5 acres
SR GPS SR GPS SR GPS SR GPS

2016 -150.34*** -127.50*** -150.06*** -138.79*** -154.98*** -126.12*** -154.83*** -143.58***
(30.34) (31.99) (31.66) (29.88) (28.87) (31.30) (30.14) (28.88)

2019 -125.58*** -104.67*** -135.00*** -109.21*** -130.66*** -84.05*** -139.63*** -91.86***
(31.74) (30.14) (30.26) (29.04) (25.82) (24.59) (25.81) (23.87)

TREAT -51.12** -19.90 -52.10** -29.81 -61.76*** -27.30 -63.63*** -38.25
(22.75) (25.93) (23.39) (26.60) (22.81) (25.82) (23.40) (26.55)

2016×TREAT 133.84*** 61.13 135.82** 75.61* 134.78*** 59.90 136.90*** 81.30*
(49.36) (44.51) (50.93) (44.26) (46.47) (43.33) (47.94) (42.76)

2019×TREAT 84.04** 76.25 90.87** 75.83 131.35*** 100.51* 138.13*** 97.69**
(39.91) (52.20) (36.83) (48.42) (38.19) (50.19) (38.14) (41.38)

Control mean 450.02 406.59 453.58 394.37 450.02 406.59 453.58 394.37
(Std. dev.) (367.97) (391.01) (373.59) (376.21) (367.97) (391.01) (373.59) (376.21)
N 1,817 1,817 1,700 1,700 2,137 2,137 1,981 1,981
R-squared 0.024 0.019 0.026 0.024 0.025 0.016 0.027 0.023
Village FE YES YES YES YES YES YES YES YES

Notes: TREAT is equal to unity if a farmer was assigned to the V or R+V groups and is equal to zero if a farmer
was assigned the C or R groups. Robust standard errors in parentheses. Standard errors are clustered at the village
level. *** p<0.01, ** p<0.05, * p<0.1
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A.4 Robustness to ANCOVA Estimation

Table 25: Treatment Effect on Self-Reported Adoption and Productiv-
ity (ANCOVA)

2014 MMP 2016-19 MMP
Fertilizer Fertilizer Yields Fertilizer Fertilizer Yields
(kg/acre) (=1) (kg/acre) (kg/acre) (=1) (kg/acre)

2016
V 8.99*** 0.31*** 49.71 9.30*** 0.32*** 43.59

(2.33) (0.07) (41.61) (2.27) (0.06) (41.18)
R 1.05 0.04* 23.81 1.16 0.04* 15.80

(1.07) (0.02) (31.49) (1.03) (0.02) (32.17)
R+V 24.90*** 0.71*** 122.93*** 25.03*** 0.71*** 105.22***

(2.34) (0.03) (40.63) (2.18) (0.03) (38.00)
Baseline value 0.72** 0.14 0.11** 0.71** 0.15 0.11**

(0.30) (0.17) (0.05) (0.30) (0.17) (0.05)
Control mean 0.03 0.01 468.45 0.03 0.01 459.89
(Std. dev.) (0.33) (0.09) (401.05) (0.32) (0.09) (396.08)
N 848 870 822 874 895 888
R-squared 0.209 0.371 0.022 0.209 0.374 0.019
Village FE YES YES YES YES YES YES

2017
V 1.39 0.03 8.96 1.86 0.04 35.62

(1.29) (0.04) (54.01) (1.14) (0.03) (46.75)
R -1.04 -0.04 -26.31 -0.60 -0.02 -32.00

(0.88) (0.03) (62.74) (0.66) (0.02) (56.68)
R+V 0.80 0.05 58.89 1.06 0.06 60.01

(0.99) (0.04) (55.18) (0.95) (0.03) (47.78)
Baseline value 0.02** 0.13 0.24*** -0.03*** 0.06 0.24***

(0.01) (0.15) (0.08) (0.01) (0.10) (0.07)
Control mean 0.04 0.01 465.60 0.03 0.01 456.12
(Std. dev.) (0.38) (0.10) (398.59) (0.34) (0.09) (381.36)
N 621 621 621 782 782 782
R-squared 0.009 0.018 0.039 0.010 0.015 0.043
Village FE YES YES YES YES YES YES

2018
V 1.26 0.03 10.74 1.59 0.04** 20.26

(1.00) (0.02) (73.51) (0.99) (0.02) (65.54)
R -0.31 -0.01 -110.85 0.24 -0.00 -68.11

(0.20) (0.01) (82.47) (0.40) (0.01) (60.98)
R+V -0.09 0.01 -16.26 1.05 0.03* 55.11

(0.21) (0.02) (70.31) (0.96) (0.02) (49.83)
Baseline value -0.00 -0.04 0.19** -0.04** -0.03** 0.20***

(0.02) (0.05) (0.08) (0.02) (0.02) (0.07)
Control mean 0.04 0.01 480.90 0.03 0.01 467.07
(Std. dev.) (0.39) (0.09) (373.24) (0.35) (0.10) (352.47)
N 499 499 499 710 710 710
R-squared 0.011 0.009 0.030 0.007 0.010 0.031
Village FE YES YES YES YES YES YES

2019
V 0.28 -0.00 38.72 1.08 0.01 50.51

(1.33) (0.02) (31.64) (1.37) (0.02) (35.26)
R -1.28 -0.01 16.37 -0.20 0.01 36.84

(0.98) (0.03) (50.92) (0.69) (0.02) (39.12)
R+V -1.50* -0.02 55.53 -0.59 -0.01 85.10**

(0.89) (0.02) (36.16) (0.43) (0.01) (35.72)
Baseline value -0.08*** -0.06* 0.16* -0.08** -0.03 0.17***

(0.02) (0.03) (0.09) (0.03) (0.02) (0.05)
Control mean 0.04 0.01 451.21 0.03 0.01 453.23
(Std. dev.) (0.42) (0.10) (346.38) (0.35) (0.10) (334.41)
N 416 416 416 707 707 707
R-squared 0.011 0.007 0.025 0.008 0.003 0.030
Village FE YES YES YES YES YES YES

All: 2016-2019
V 4.01*** 0.13*** 32.66 3.72*** 0.11*** 37.57

(1.28) (0.03) (39.00) (1.21) (0.03) (36.69)
R -0.26 -0.00 -14.39 0.18 0.01 -9.01

(0.51) (0.01) (43.65) (0.46) (0.01) (36.37)
R+V 8.97*** 0.28*** 67.30* 7.73*** 0.23*** 79.39**

(1.05) (0.02) (36.93) (0.89) (0.02) (32.34)
Baseline value 0.33*** 0.11 0.18*** 0.16** 0.04 0.18***

(0.10) (0.07) (0.05) (0.07) (0.05) (0.04)
Control mean 0.02 0.01 448.61 0.02 0.007 448.61
(Std. dev.) (0.30) (0.08) (386.97) (0.30) (0.08) (386.97)
N 2,384 2,406 2,358 3,073 3,094 3,087
R-squared 0.116 0.215 0.070 0.107 0.202 0.077
Village FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Notes: V denotes Voucher group, R denotes the Recommendations group, and RV
denotes the Recommendations and Voucher group. Regressions include indicators for
missing values following equation (3). Robust standard errors in parentheses. Standard
errors are clustered at the village level. *** p<0.01, ** p<0.05, * p<0.1
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Table 26: Treatment Effect on Productivity Using Self-Reported and GPS Plot Size (ANCOVA)
(1) (2) (3) (4) (5) (6) (7) (8)

2014 MMP >0.5 acres 2016/19 MMP >0.5 acres
SR GPS SR GPS SR GPS SR GPS

2016
V 49.75 30.06 43.33 33.19 53.74 39.24 47.64 40.22

(46.62) (42.40) (48.19) (44.16) (46.43) (40.00) (48.47) (41.36)
R -11.68 -23.01 -17.14 -29.38 -21.43 -21.03 -26.52 -26.54

(30.15) (30.70) (31.32) (29.87) (30.55) (28.69) (34.42) (28.20)
R+V 117.71** 53.51 119.19** 54.90 111.42*** 59.58 112.31** 59.86

(45.03) (49.72) (46.06) (53.29) (40.86) (49.37) (42.50) (52.17)
Baseline value 0.13** 0.23*** 0.12* 0.22*** 0.12** 0.23*** 0.11* 0.23***

(0.06) (0.07) (0.06) (0.07) (0.05) (0.07) (0.06) (0.07)
Control mean 481.13 435.74 485.28 427.91 474.38 429.30 480.90 456.84
(Std. dev.) (399.58) (411.28) (405.52) (409.08) (395.66) (411.59) (402.43) (337.21)
N 659 659 620 620 699 699 656 656
R-squared 0.024 0.044 0.024 0.048 0.023 0.048 0.023 0.054
Village FE YES YES YES YES YES YES YES YES

2019
V 43.85 45.28 13.62 17.09 51.71 48.29 37.49 43.27

(34.30) (40.14) (35.85) (38.16) (36.37) (36.48) (37.33) (35.92)
R 10.10 -29.97 -25.70 -56.45 30.55 26.43 16.12 13.50

(50.03) (46.55) (51.16) (49.93) (39.03) (51.42) (42.88) (49.37)
R+V 52.59 61.33 28.22 12.73 87.76** 94.87* 75.02** 53.27

(38.41) (46.32) (34.59) (41.59) (36.15) (54.50) (34.43) (38.56)
Baseline value 0.16* 0.19*** 0.11 0.16*** 0.17*** 0.14** 0.14*** 0.14***

(0.09) (0.07) (0.07) (0.05) (0.05) (0.05) (0.05) (0.05)
Control mean 456.39 431.86 454.14 408.48 456.84 418.48 461.46 407.49
(Std. dev.) (347.30) (392.28) (353.55) (345.40) (337.21) (374.62) (343.87) (346.63)
N 409 409 372 372 689 689 617 617
R-squared 0.025 0.043 0.012 0.035 0.031 0.021 0.025 0.029
Village FE YES YES YES YES YES YES YES YES

All: 2016 & 2019
V 55.52 42.43 41.03 33.96 52.74 41.14 42.27 40.09

(35.49) (31.54) (35.62) (32.37) (33.88) (29.96) (34.20) (29.86)
R 8.23 -12.54 -9.15 -27.26 7.77 2.78 -3.57 -8.65

(30.82) (28.24) (29.98) (25.18) (31.68) (36.01) (33.52) (32.77)
R+V 92.05** 55.33 82.03** 37.47 99.23*** 72.87* 91.26*** 50.87

(36.01) (41.25) (35.91) (39.05) (30.73) (41.82) (30.78) (37.68)
Baseline value 0.15*** 0.22*** 0.13** 0.22*** 0.14*** 0.18*** 0.12*** 0.19***

(0.05) (0.06) (0.05) (0.05) (0.04) (0.05) (0.04) (0.05)
Control mean 455.23 417.92 456.98 402.67 455.23 417.92 456.98 402.67
(Std. dev.) (385.24) (414.67) (390.47) (394.80) (385.24) (414.67) (390.47) (394.80)
N 1,068 1,068 992 992 1,388 1,388 1,273 1,273
R-squared 0.020 0.044 0.018 0.047 0.022 0.035 0.020 0.044
Village FE YES YES YES YES YES YES YES YES

Notes: V denotes Voucher group, R denotes the Recommendations group, and RV denotes the Recommendations and Voucher group. Regressions
include indicators for missing values following equation (3). Robust standard errors in parentheses. Standard errors are clustered at the village level.
*** p<0.01, ** p<0.05, * p<0.1
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Table 27: Summary of Results
Data DD OLS Pooled ANCOVA

Panel A: 2014 MMP
2016 SR 37%*** NA 27%*** 26%***
2016 Satellite NA 0-4%* 0-3%** NA
2016 GPS 0% NA 0-19%* 0%
2019 SR 0% NA 17%* 0%
2019 Satellite NA 0% 0% NA
2019 GPS 0% NA 0% 0%

Panel B: 2016/19 MMP
2016 SR 34%*** NA 25%*** 23%***
2016 Satellite NA 0% 0% NA
2016 GPS 0% NA 0-21%* 0%
2019 SR 33%*** NA 25%** 19%**
2019 Satellite NA 0-3.5%** 0% NA
2019 GPS 33%* NA 25%** 23%*

Notes: DD denotes difference-in-differences and Pooled denotes the pooled V and
R+V groups. *** p<0.01, ** p<0.05, * p<0.1
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A.5 Construction of the True Soil Quality Index

The true soil quality (TSQ) index is constructed as follows. First, we convert the individual soil nutrient measures to

a number between zero and one. For pH and electrical conductivity (EC), we use an optimal scoring method. For

example, the optimal pH value is between 5.5 and 6.5, which is assigned a value of one. As the pH decreases or

increases away from this optimal value, the score decreases progressively. For the other nutrient and/or soil character-

istics, a ‘more is better’ scoring method is applied. The scores attributed to the level of nutrients are shown in Table ??

below. Second, once the individual nutrients have been assigned a value between zero and one, with a higher number

Table 28: Individual Nutrient Scores

pH (H2O)

Score 0 0.33 0.66 1 0.66 0.33 0
Classification Very low Low Medium Optimum High-not limiting High-limiting Very high
Thresholds <= 4 >4 & <= 5 >5 & <= 5.5 >5.5 & <=6.5 >6.5 & <=7.5 >7.5 & <=8.5 >8.5

Electrical conductivity

Score 0 0.33 0.66 1 0.66 0.33 0
Classification Low fertility Medium fertility Slightly saline Very saline Severe salinity Very severe salinity Few crops can grow
Thresholds <= 0.1 >0.1 & <= 0.3 >0.3 & <= 0.6 >0.6 & <=1.2 >1.2 & <=2.4 >2.4 & <=4 >4

Phosphorus

Score 0 0.33 0.33 0.66 0.66 1
Classification Extremely low Very low Low Medium High Excessive
Thresholds <= 0.05 >0.05 & <= 0.1 >0.1 & <= 0.3 >0.3 & <= 0.5 >0.5 & <= 2 >2

Potassium

Score 0 0.25 0.5 0.75 1
Classification Very low Low Medium High Very high
Thresholds <= 10 >10 & <= 20 >20 & <= 40 >40 & <= 60 >60

Sulfur

Score 0 0.33 0.66 1
Classification Very low Low Medium High
Thresholds <= 5 >5 & <= 10 >10 & <= 15 >15

Active carbon

Score 0 0.2 0.4 0.6 0.8 1
Classification Extremely low Very low Low Medium High Extremely high
Thresholds <= 150 >150 & <= 250 >250 & <= 350 >350 & <=500 >500 & <=700 >700

Nitrogen

Score 0 0.2 0.4 0.6 0.8 1
Classification Very low Low Medium Medium/High High Very high
Thresholds <= 21 >21 & <= 42 >42 & <= 65 >65 & <=90 >90 & <=120 >120

Notes: Electrical conductivity is measured in units of deciSiemens per meter (dS/m). Phosphorus is measured in units of mg P per kg of soil.
Potassium is measured in units of mg K per kg of soil. Sulfur is measured in units of mg S per kg of soil. Active carbon is measured in units of mg
carbon per kg of soil. Nitrogen is measured in units of mg N per kg of soil.

indicating a better nutritional content, we use Principal Component Analysis (PCA) to assign weights to every nutri-

ent. PCA is a statistical method that is used to reduce data dimensions for ease of interpretation, but without losing

the information explained (Jolliffe & Cadima, 2016). This is done by creating new variables that we call principal

components. In the context of this study, we are assuming that the seven soil fertility indicators explain a common
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Table 29: PCA Eigenvalues and Variances
Comp1 Comp2 Comp3 Comp4 Comp5 Comp6 Comp7

Eigenvalues 1.55 1.33 1.14 0.96 0.77 0.65 0.60
Variance proportion 0.22 0.19 0.16 0.14 0.11 0.092 0.086
Cumulative variance 0.22 0.41 0.57 0.71 0.82 0.91 1

factor, which is soil fertility. By using PCA, we are able to reduce the seven soil fertility indicators to a number of

principal components that can be used to obtain weights for every variable.

Different methods have been used to determine how many components should be retained when doing PCA. The

most used method is to retain all components that have an eigenvalue larger than one, which is known as the Kaiser

criterion (Kaiser, 1960). Thus, the first three components are retained as they have eigenvalues greater than one. How-

ever, several studies showed that the Kaiser rule can be inaccurate (Linn, 1968; Zwick & Velicer, 1986).

Since the total variance explained by these three components is only around 57% (Table ??), we use the “cu-

mulative percent of variance accounted for” criterion and retain the fourth component as well that has an eigenvalue

of 0.96, raising the total variance explained to 71% (Table ??). Keeping the fourth component is also intuitive due

to two main reasons. First, the total variance explained is now more than 70%, which is a common minimum total

variance threshold used (Jolliffe & Cadima, 2016). Second, the eigenvalue of this additional retained component is

0.96, which is very close to one. Then, once the four components are retained, each nutritional element is assigned a

weight by the fraction of total variation explained by its component out of the total variance. The relevant component

for each nutritional element is the one which corresponds to the maximum eigenvector observed in Table ??.10 The

same procedure is applied to all other nutrient elements to assign a weight for each one of them. Once all weights have

been assigned, the soil index is then calculated according to the following formula:

Soil Index =

7∑
i=1

Weight× Scorei (24)

where Weight is the PCA weights explained above, i corresponds to each nutritional element, and Score is a value

between zero and one of each nutritional element detailed above. To expand (24), we use the assigned weights:

Soil Index =

(
0.16

0.71
× pH

)
+

(
0.19

0.71
× EC

)
+

(
0.14

0.71
× C

)
+

(
0.19

0.71
×N

)
+

(
0.22

0.71
× P

)
+

(
0.22

0.71
×K

)
+

(
0.22

0.71
× S

)
(25)

Finally, the index is then normalized to a number between 0 and 1 by adding the lowest score (in absolute value)

and then dividing by the highest value to get the TSQ index. A TSQ is considered poor if it is less than 0.33; fair if

it is higher than or equal to 0.33 and less than 0.66; good if it is higher than or equal to 0.66. Figure 10 shows the

distribution of the index and the cutoff lines.

10For example, pH is assigned to component three since the highest number (0.6853 in Table ??) is observed at
component 3, and hence pH is given a weight of 0.225 = 0.16/0.71
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Table 30: Principal Components (Eigenvectors)
Comp1 Comp2 Comp3 Comp4

pH score -0.25 -0.24 0.69 -0.27
EC score 0.37 -0.50 -0.084 0.33
C score 0.079 0.34 0.33 0.83
N score 0.018 0.65 0.31 -0.17
P score 0.54 -0.15 0.32 -0.048
K score 0.57 0.013 0.28 -0.25
S score 0.42 0.38 -0.38 -0.20
Note: Observations: 1003. Retained components: 4.

Fig 10: Distribution of the TSQ Index
Note: The vertical lines are the cutoffs based on which soils are classified

as being of "poor”, “fair”, or “good” quality.
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